78 research outputs found
Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications
This review presents an overview of the thermal properties of mesoscopic
structures. The discussion is based on the concept of electron energy
distribution, and, in particular, on controlling and probing it. The
temperature of an electron gas is determined by this distribution:
refrigeration is equivalent to narrowing it, and thermometry is probing its
convolution with a function characterizing the measuring device. Temperature
exists, strictly speaking, only in quasiequilibrium in which the distribution
follows the Fermi-Dirac form. Interesting nonequilibrium deviations can occur
due to slow relaxation rates of the electrons, e.g., among themselves or with
lattice phonons. Observation and applications of nonequilibrium phenomena are
also discussed. The focus in this paper is at low temperatures, primarily below
4 K, where physical phenomena on mesoscopic scales and hybrid combinations of
various types of materials, e.g., superconductors, normal metals, insulators,
and doped semiconductors, open up a rich variety of device concepts. This
review starts with an introduction to theoretical concepts and experimental
results on thermal properties of mesoscopic structures. Then thermometry and
refrigeration are examined with an emphasis on experiments. An immediate
application of solid-state refrigeration and thermometry is in ultrasensitive
radiation detection, which is discussed in depth. This review concludes with a
summary of pertinent fabrication methods of presented devices.Comment: Close to the version published in RMP; 59 pages, 35 figure
- …