22 research outputs found

    Vasodilator factors in the systemic and local adaptations to pregnancy

    Get PDF
    We postulate that an orchestrated network composed of various vasodilatory systems participates in the systemic and local hemodynamic adaptations in pregnancy. The temporal patterns of increase in the circulating and urinary levels of five vasodilator factors/systems, prostacyclin, nitric oxide, kallikrein, angiotensin-(1–7) and VEGF, in normal pregnant women and animals, as well as the changes observed in preeclamptic pregnancies support their functional role in maintaining normotension by opposing the vasoconstrictor systems. In addition, the expression of these vasodilators in the different trophoblastic subtypes in various species supports their role in the transformation of the uterine arteries. Moreover, their expression in the fetal endothelium and in the syncytiotrophoblast in humans, rats and guinea-pigs, favour their participation in maintaining the uteroplacental circulation. The findings that sustain the functional associations of the various vasodilators, and their participation by endocrine, paracrine and autocrine regulation of the systemic and local vasoactive changes of pregnancy are abundant and compelling. However, further elucidation of the role of the various players is hampered by methodological problems. Among these difficulties is the complexity of the interactions between the different factors, the likelihood that experimental alterations induced in one system may be compensated by the other players of the network, and the possibility that data obtained by manipulating single factors in vitro or in animal studies may be difficult to translate to the human. In addition, the impossibility of sampling the uteroplacental interface along normal pregnancy precludes obtaining longitudinal profiles of the various players. Nevertheless, the possibility of improving maternal blood pressure regulation, trophoblast invasion and uteroplacental flow by enhancing vasodilation (e.g. L-arginine, NO donors, VEGF transfection) deserves unravelling the intricate association of vasoactive factors and the systemic and local adaptations to pregnancy

    Challenges posed to the maternal circulation by pregnancy

    No full text
    Gloria Valdés, Jenny CorthornCentro de Investigaciones Médicas y Departamento Nefrología, Escuela Medicina, Pontificia Universidad Católica, Santiago, ChileAbstract: In primates, adequate growth of the fetus depends on the development of the uteroplacental unit. On the fetal side, this is achieved by the creation of the vascular network of the placenta. On the maternal side, the transformation of the spiral arteries into saccular nonreactive vessels by the trophoblast provides high blood flow to the intervillous space. Apart from the changes in the uterine arteries, the mother expands her plasma volume – at the expense of stimulating the renin-angiotensin-aldosterone system – and her cardiac output. In the maintaining of normotension in the face of an increased cardiac output and plasma volume, the renin-angiotensin-aldosterone system requires an enhanced vasodilator synthesis. Finally, in the late stages of pregnancy, a normal endothelial function is required to provide an ample margin to the activation provoked by deportation of syncytiotrophoblast fragments/factors to the maternal circulation. These four adaptative processes require various interrelated vasodilator systems. Deficient adaptations cause isolated or proteinuric arterial hypertension, intrauterine growth restriction, preterm delivery, and stillbirths, among others. Moreover, a normal or a defective adaptation to pregnancy influences maternal cardiovascular health in later life, as evidenced by various studies, most of them epidemiological; thus, pregnancy is now considered a stress test to the maternal cardiovascular system. Because of this, women planning to become pregnant should be screened for clinical and biochemical cardiovascular risks. Inversely, women presenting with hypertension in pregnancy should be thoroughly studied to detect and correct cardiovascular risks. The incorporation of the predictive value of a hypertensive pregnancy should help reduce cardiovascular disease in women.Keywords: renin-angiotensin-aldosterone system, prostanoids, kallikrein-kinin system, RAS, VEG

    Kallikrein and prekallikrein on the basolateral membrane of rat kidney tubules.

    No full text

    Effect of amiloride on urinary and renal kallikrein in the rat

    No full text

    Hypertension in mice lacking the proatrial natriuretic peptide convertase corin

    No full text
    Atrial natriuretic peptide (ANP) is a cardiac hormone that regulates blood pressure. In cardiomyocytes, the hormone is synthesized as a precursor, proatrial natriuretic peptide (pro-ANP), which is proteolytically converted to active ANP. Corin is a cardiac transmembrane serine protease that has been shown to process pro-ANP in vitro, but its physiological importance had not been established. Here, we show that corin-deficient (Cor(-/-)) mice develop normally during embryogenesis and survive to postnatal life. Cor(-/-) mice have elevated levels of pro-ANP but no detectable levels of ANP as compared with WT littermates. Infusion of an active recombinant soluble corin transiently restores pro-ANP conversion, resulting in the release of circulating biologically active ANP. Using radiotelemetry to assess blood pressure, we find that Cor(-/-) mice have spontaneous hypertension as compared with WT mice, and it is enhanced after dietary salt loading. Pregnant Cor(-/-) mice demonstrate late-gestation proteinuria and enhanced high blood pressure during pregnancy. In addition, Cor(-/-) mice exhibit cardiac hypertrophy resulting in a mild decline in cardiac function later in life. Thus, our data establish corin as the physiological pro-ANP convertase and indicate that corin deficiency may contribute to hypertensive heart disease
    corecore