61 research outputs found

    Model of unidirectional block formation leading to reentrant ventricular tachycardia in the infarct border zone of postinfarction canine hearts

    Get PDF
    AbstractBackgroundWhen the infarct border zone is stimulated prematurely, a unidirectional block line (UBL) can form and lead to double-loop (figure-of-eight) reentrant ventricular tachycardia (VT) with a central isthmus. The isthmus is composed of an entrance, center, and exit. It was hypothesized that for certain stimulus site locations and coupling intervals, the UBL would coincide with the isthmus entrance boundary, where infarct border zone thickness changes from thin-to-thick in the travel direction of the premature stimulus wavefront.MethodA quantitative model was developed to describe how thin-to-thick changes in the border zone result in critically convex wavefront curvature leading to conduction block, which is dependent upon coupling interval. The model was tested in 12 retrospectively analyzed postinfarction canine experiments. Electrical activation was mapped for premature stimulation and for the first reentrant VT cycle. The relationship of functional conduction block forming during premature stimulation to functional block during reentrant VT was quantified.ResultsFor an appropriately placed stimulus, in accord with model predictions: 1. The UBL and reentrant VT isthmus lateral boundaries overlapped (error: 4.8±5.7mm). 2. The UBL leading edge coincided with the distal isthmus where the center-entrance boundary would be expected to occur. 3. The mean coupling interval was 164.6±11.0ms during premature stimulation and 190.7±20.4ms during the first reentrant VT cycle, in accord with model calculations, which resulted in critically convex wavefront curvature and functional conduction block, respectively, at the location of the isthmus entrance boundary and at the lateral isthmus edges.DiscussionReentrant VT onset following premature stimulation can be explained by the presence of critically convex wavefront curvature and unidirectional block at the isthmus entrance boundary when the premature stimulation interval is sufficiently short. The double-loop reentrant circuit pattern is a consequence of wavefront bifurcation around this UBL followed by coalescence, and then impulse propagation through the isthmus. The wavefront is blocked from propagating laterally away from the isthmus by sharp increases in border zone thickness, which results in critically convex wavefront curvature at VT cycle lengths

    Slow uniform electrical activation during sinus rhythm is an indicator of reentrant VT isthmus location and orientation in an experimental model of myocardial infarction.

    Get PDF
    BACKGROUND: To validate the predictability of reentrant circuit isthmus locations without ventricular tachycardia (VT) induction during high-definition mapping, we used computer methods to analyse sinus rhythm activation in experiments where isthmus location was subsequently verified by mapping reentrant VT circuits. METHOD: In 21 experiments using a canine postinfarction model, bipolar electrograms were obtained from 196-312 recordings with 4mm spacing in the epicardial border zone during sinus rhythm and during VT. From computerized electrical activation maps of the reentrant circuit, areas of conduction block were determined and the isthmus was localized. A linear regression was computed at three different locations about the reentry isthmus using sinus rhythm electrogram activation data. From the regression analysis, the uniformity, a measure of the constancy at which the wavefront propagates, and the activation gradient, a measure that may approximate wavefront speed, were computed. The purpose was to test the hypothesis that the isthmus locates in a region of slow uniform activation bounded by areas of electrical discontinuity. RESULTS: Based on the regression parameters, sinus rhythm activation along the isthmus near its exit proceeded uniformly (mean r2= 0.95±0.05) and with a low magnitude gradient (mean 0.37±0.10mm/ms). Perpendicular to the isthmus long-axis across its boundaries, the activation wavefront propagated much less uniformly (mean r2= 0.76±0.24) although of similar gradient (mean 0.38±0.23mm/ms). In the opposite direction from the exit, at the isthmus entrance, there was also less uniformity (mean r2= 0.80±0.22) but a larger magnitude gradient (mean 0.50±0.25mm/ms). A theoretical ablation line drawn perpendicular to the last sinus rhythm activation site along the isthmus long-axis was predicted to prevent VT reinduction. Anatomical conduction block occurred in 7/21 experiments, but comprised only small portions of the isthmus lateral boundaries; thus detection of sinus rhythm conduction block alone was insufficient to entirely define the VT isthmus. CONCLUSIONS: Uniform activation with a low magnitude gradient during sinus rhythm is present at the VT isthmus exit location but there is less uniformity across the isthmus lateral boundaries and at isthmus entrance locations. These factors may be useful to verify any proposed VT isthmus location, reducing the need for VT induction to ablate the isthmus. Measured computerized values similar to those determined herein could therefore be assistive to sharpen specificity when applying sinus rhythm mapping to localize EP catheter ablation sites

    Source-sink mismatch causing functional conduction block in re-entrant ventricular tachycardia

    Get PDF
    Ventricular tachycardia (VT) caused by a re-entrant circuit is a life-threatening arrhythmia that at present cannot always be treated adequately. A realistic model of re-entry would be helpful to accurately guide catheter ablation for interruption of the circuit. In this review, models of electrical activation wavefront propagation during onset and maintenance of re-entrant VT are discussed. In particular, the relationship between activation mapping and maps of transition in infarct border zone thickness, which results in source-sink mismatch, is considered in detail and supplemented with additional data. Based on source-sink mismatch, the re-entry isthmus can be modeled from its boundary properties. Isthmus boundary segments with large transitions in infarct border zone thickness have large source-sink mismatch, and functional block forms there during VT. These alternate with segments having lesser thickness change and therefore lesser source-sink mismatch, which act as gaps, or entrance and exit points, to the isthmus during VT. Besides post-infarction substrates, the source-sink model is likely applicable to other types of volumetric changes in the myocardial conducting medium, such as when there is presence of fibrosis or dissociation of muscle fibers

    Gender Differences in Obesity-Associated Cardiac Remodeling

    No full text
    The prevalence of obesity has been increasing globally, with important implications for cardiovascular morbidity and mortality. Obesity is linked to changes in cardiac morphology that collectively play a role in the development of heart failure in this population, as hemodynamic and metabolic alterations lead to cardiac hypertrophy and chamber enlargement. Over time subclinical abnormalities in contractile function occur and could progress to overt clinical heart failure. Understanding the relationship between obesity and alterations in cardiac structure and function has important implications for the development of lifestyle and pharmacologic interventions targeting this modifiable risk factor. There is also a growing awareness of the importance of understanding gender differences in obesity. Gender-specific patterns of adiposity and fat distribution in addition to the distinctive hormonal environments of men and women may lead to sex-specific differences in the degree of cardiometabolic risk associated with obesity. Imaging studies have shown that ventricular remodeling in response to obesity differs among the sexes, and these differences may play a role in the female predominance of heart failure with a preserved ejection fraction

    Structure and function of the ventricular tachycardia isthmus

    Get PDF
    Catheter ablation of postinfarction reentrant ventricular tachycardia (VT) has received renewed interest owing to the increased availability of high-resolution electroanatomic mapping systems that can describe the VT circuits in greater detail and the emergence and need to target noninvasive external beam radioablation. These recent advancements provide optimism for improving the clinical outcome of VT ablation in patients with postinfarction and potentially other scar-related VTs. The combination of analyses gleaned from studies in swine and canine models of postinfarction reentrant VT, and in human studies, suggests the existence of common electroanatomic properties for reentrant VT circuits. Characterizing these properties may be useful for increasing the specificity of substrate mapping techniques and for noninvasive identification to guide ablation. Herein, we describe properties of reentrant VT circuits that may assist in elucidating the mechanisms of onset and maintenance, as well as a means to localize and delineate optimal catheter ablation targets
    • …
    corecore