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Catheter ablation of postinfarction reentrant ventricular tachy-
cardia (VT) has received renewed interest owing to the increased
availability of high-resolution electroanatomic mapping systems
that can describe the VT circuits in greater detail, and the emer-
gence and need to target noninvasive external beam radioablation.
These recent advancements provide optimism for improving the
clinical outcome of VT ablation in patients with postinfarction
and potentially other scar-related VTs. The combination of analyses
gleaned from studies in swine and canine models of postinfarction
reentrant VT, and in human studies, suggests the existence of com-
mon electroanatomic properties for reentrant VT circuits. Character-
izing these properties may be useful for increasing the specificity of
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substrate mapping techniques and for noninvasive identification to
guide ablation. Herein, we describe properties of reentrant VT cir-
cuits that may assist in elucidating the mechanisms of onset and
maintenance, as well as a means to localize and delineate optimal
catheter ablation targets.
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Introduction
Ventricular tachycardia (VT) is an important clinical problem
in patients with structural heart disease, including ischemic
and nonischemic cardiomyopathies.1–4 These patients are at
increased risk for sustained ventricular tachyarrhythmias
that can lead to hemodynamic decompensation including
sudden cardiac death.5 The primary mechanism of VT in
these patients is reentry, also known as reentrant excitation,
due to the continuous excitation of the ventricle during the
entire cardiac cycle. Ablation procedures that have been
used to identify and eliminate VT circuits can vary signifi-
cantly depending on the substrate and the strategy for
treatment. In some subgroups (post-myocardial infarction
[post-MI] with slow and mappable VT), the results are excel-
lent. Failure, when it occurs, tends to be related to limited
mapping specificity when identifying VT isthmus sites crit-
ical for maintenance of the circuit.6–8

Major challenges for procedural improvement during VT
ablation include the following. (1) The majority of VTs are
hemodynamically unstable, preventing mapping of the cir-
cuit. (2) The substrate forming the VT isthmus is partially
functional and may not be readily identified during sinus
rhythm. (3) Ablation strategies to selectively eliminate areas
forming isthmus sites have not been well established, partic-
ularly in large areas of scar with multiple exit sites. (4) VT
circuits may be endocardial, epicardial, endo–epicardial, or
intramural. Herein, our discussion shall be limited to reen-
trant VT in patients with ischemic cardiomyopathy, for which
animal and human data on mechanism and electrical–
structural correlation are most robust.

In structural heart disease, the primary mechanism of VT
is reentry located within scar regions.9,10 After MI, healing of
the damaged tissue involves fibrogenesis that produces
geometrically constrained formations of surviving,
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electrically conducting myocardial cells at infarct border
zones11 as well as wall thinning,12 both of which affect the
electrical activation pattern in the heart. The border zone
characteristics depend on the location and duration of coro-
nary occlusion as well as the reperfusion therapy.13 The fibro-
genesis component represents a pathologic remodeling of the
myocardium, and it can be detected using certain types of car-
diac imaging. Fibrosis separates myocyte bundles serving as
conducting channels so that the activation wavefront takes a
zigzag route with slowed conduction.14,15 During premature
stimulation, zones of denser fibrosis are associated with con-
duction delay.16 Studies have found a positive correlation be-
tween the total scar mass and risk for VT.17

VT circuit pathways are frequently established within thin
surviving tissue structures, several millimeters thick, sur-
rounding the scar.18 Although mapping of the VT circuit is
the gold standard to identify its components including the tar-
gets of ablation, this is not possible in a large proportion of
patients due to hemodynamic instability. Therefore, methods
for identifying critical components of the VT circuit during
stable rhythms, so-called substrate mapping, often are at-
tempted.19 Substrate mapping is implemented during stable
sinus or paced rhythm to identify the VT targets.20,21 The un-
derlying principle governing the process of substrate map-
ping is that the bundles of surviving myocytes within
heterogeneous scar that are identified during sinus rhythm
may form VT isthmuses.22 However, successful activation
mapping with ablation of VT remains a challenging task
because conditions present during VT may not be present
during stable rhythms, in part due to the difficulty in precisely
Figure 1 Forms of the reentrant circuit. In each case, the activation wavefron
B: Double-loop or figure-of-8. C: Four-loop. D: Alternate form for 4-loop with 2
identifying crucial properties of the VT circuit, as well as the
influence of the variation in activation wavefront orientation
on how the ventricular scar is characterized.23

A reentrant circuit is an electrical pathway along which the
activation wavefront travels in a loop or loops, having a cir-
cular pattern.24 Each repeat excursion of the impulse around
the circuit defines a cycle of VT. The isthmus, which is also
known as the diastolic corridor or central common pathway,
is a protected segment in the circuit where all loops rejoin,
and ablation at this location has the best chance to disrupt
the circuit. In order to better localize reentrant circuits and
optimize ablation strategies, it would be useful to describe
the circuit structure and function. Recognizing the character-
istics during high-density substrate mapping could assist in
more rapid detection of arrhythmogenic regions for more effi-
cacious catheter ablation during electrophysiological (EP)
study. Herein, the properties common to many reentrant
VTs are described and discussed, with schematic diagrams
used for illustration.
Circuit morphology
The shape of the VT circuit can exhibit several patterns
(Figure 1). In the case of the single-loop form, the electrical
activation wavefront, noted by arrows, propagates around a
lone area of inexcitability (Figure 1A). There can be an
isthmus, for example, where the mitral annulus may act to
constrain the circuit, as shown.10 Such a single-loop isthmus
has an entrance and an exit. For the double-loop circuit, also
known as a figure-of-8, there are 2 areas of inexcitability
t (arrows) travels around inexcitable regions A: Single-loop configuration.
isthmuses.
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(Figure 1B). Propagation of the wavefront around the double-
loop proceeds through the isthmus, which is the narrow re-
gion common to both circuit loops, as shown. The time dur-
ing which it propagates through the isthmus occurs during the
diastolic interval of the electrocardiogram (ECG), that is, the
interval between the end of the QRS wave of one beat of VT
and the beginning of the QRS wave of the next.25,26 At the
isthmus exit, the impulse bifurcates, the 2 wavefronts travel
around areas of inexcitability in the outer pathway, they coa-
lesce, and then reenter the previously excited area (shown).
Some circuits with a double-loop appearance are actually
maintained by the shorter dominant loop, rather than by
both loops.27 Occasionally a 4-loop reentrant circuit pattern
has also been observed, but thus far only in rabbit and in
canine postinfarction hearts.28–31 When the 4-loop circuit
has a single isthmus, it is a region common to all 4 loops
with at least 2 entrances and 2 exits (Figure 1C). The wave-
fronts propagate around 4 areas of inexcitability, as depicted.
Two distinct isthmuses may also communicate to form 4
loops overall (Figure 1D).

In clinical studies of patients following MI, activation
mapping has demonstrated the presence of a reentrant circuit
which can be composed of a single loop.10,32–35 The
inexcitable region may be formed by an aneurysm,32 a func-
tional, transverse arc of block in parallel to muscle fiber
axis,34 or an anatomic line of block.35 Double-loop reentrant
circuits are also frequently observed in clinical
studies,4,10,33,35–40 and the isthmus lateral boundaries tend
to be partially or mostly comprised of functional arcs of
conduction block,10,22,23,33–37,39,40–46 although anatomic
components may be present as well. Many such reentrant
circuits have 2 or more entrances or exits, as well as dead
ends and bystander regions.1,4,10,26,39,43,47–50

In animal models, as in clinical cases, single-loop circuits
occur,51–54 and double-loop forms are frequently
observed,1,29,51,52,54–57 whereas, as aforementioned, 4-loop
patterns are sometimes evident.28–31 Some reentrant circuits
in postinfarction canine hearts are also transmural,
involving both midmyocardial and heart surface
components.58
Circuit conductive properties
The entrance to and exit from the isthmus are circuit regions
where conduction slowing can occur, while conduction
within the isthmus itself can have near-normal properties.1

Reentrant circuits often appear exclusively at the endocardial
or epicardial heart surface,38,59 but they also can be located
midmyocardially. For midmyocardial circuits, the pathway
is 3-dimensional, but this can only be appreciated when
both epicardial and endocardial mapping are performed.40

Recent high-density mapping studies have shown that some
circuits are transmural, involving endocardial, midmyocar-
dial, and epicardial pathways.40,60

In canine 3-to 5-day postinfarction experiments, in part
because there is no fibrotic scarring,52,55,61,62 functional
block is apparent at the lateral isthmus boundaries,51–53,56,63
although, in about one-third of cases, anatomic block is also
manifest along short segments of these boundaries.31 In older
canine infarcts, anatomic block often corresponds to patches
of dense scar.58 Propagation of the wavefront as observed in
sinus rhythm activation maps suggests that reentrant circuits
in swine postinfarction are also largely determined by func-
tional rather than fixed anatomic barriers.64

The formation of functional block is dependent on hetero-
geneities of the EP properties of myocardial fibers.65 It can
occur as a result of the remodeling of gap junctions and ion
channel properties66 or with changes in wavefront direction
due to source–sink (impedance or current-to-load)
mismatch.30,67–75 An arc of conduction block can be
considered to be functional if it appears during reentrant VT
but not during sinus rhythm31 or pacing. It can be considered
to be anatomic if it is present during sinus rhythm, pacing, and
VT.31 However, these definitions are not exact, as anatomic
blockwill not be apparent if the activationwave travels in par-
allel to it or intercepts at an oblique angle. Indeed, in postop-
erative mapping, it has been observed that a transverse block
line observed during sinus rhythm may disappear and be re-
placed by a smooth spread of activation at the onset of pro-
grammed stimulation.34 Functional block has also been
defined as an area of myocardium that is not electrically excit-
able at shorter coupling intervals but is excitable at relatively
long cycle lengths.51 A broad definition of functional block
would be that electrical conduction block occurs in some cir-
cumstances of wavefront orientation and coupling interval,
but not all. Anatomic block would then be defined as an
area resulting from anatomic defect where conduction block
occurs regardless of wavefront orientation and coupling inter-
val, although its appearance can be masked when the wave-
front travels in parallel or intercepts at oblique angles.

From clinical noncontact mapping analysis, sustained
reentry is more common in circuits having greater dimension
of isthmus length and width, whereas nonsustained (or tran-
sient) VT, defined as being,30 seconds in duration, tends to
occur when isthmus dimensions are reduced.36 Nonsustained
episodes are also more common when the entrance and exit
points to the isthmus are narrower, and when the difference
in sinus rhythm activation time across them is relatively
large, so as to form electrical discontinuities.29,36 The reen-
trant circuit dimensions that are characteristic of a particular
postinfarction heart can be identified by pace mapping76;
however, this sometimes overestimates isthmus size.1

Anisotropy refers to the anatomic and biophysical proper-
ties of the myocardium, which vary with direction.65 Normal
conduction velocity of the activation wavefront in the
myocardium is anisotropic—it is faster in the longitudinal
vs the transverse fiber direction. In canine postinfarction,
the ratio has been found to be approximately 1.6:1.66 Due
to remodeling of ion channel and gap junctional connections
between myocytes, the conduction velocity in canine postin-
farction slows in both the longitudinal and transverse direc-
tions at the outer pathway, which is the portion of the
reentrant circuit outside the isthmus. Here, slowing is more
prominent in the transverse direction, so the anisotropic ratio
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becomes 2:1.66 Within the isthmus itself, conduction velocity
is slowest, but with the anisotropic ratio returning to 1.6:1.
Conduction velocity typically slows further at turning points
at the isthmus entrance and exit due to changes in wavefront
curvature,1,56 with conduction velocity ranging from 0.10 to
15 mm/ms there, which greatly contributes to the overall
tachycardia cycle length. In canine postinfarction, cycle
length tends to prolong with larger dimensions of isthmus
length and width, when the circuit pathway lengthens, and
when there is a narrowed isthmus segment leading to a sharp
distal expansion,77 which can result in additional wavefront
slowing at the distal end due to impedance
mismatch.67–71,77–79 Likewise, in swine postinfarction,
there is a direct dependence of tachycardia cycle length on
isthmus length and width.80 Larger dimensions of length
and width have been shown to correlate with the presence
of multiple circuit loops,29 as well as with multiple isthmus
entrance and/or exit points.29,36 In clinical studies, VT cycle
length is at least partially correlated to conduction velocity
along the outer circuit loop.35,81
Central isthmus electrogram morphology
The isthmus of the reentrant circuit was first shown to overlap
a thinnest layer of surviving infarct border zone in a canine
postinfarction model of VT.55,61,63 At the isthmus location,
heart wall thinning is evident in clinical studies.82,83 The
characteristic has implications for the morphology of electro-
grams acquired from the region. In human VT, midisthmus
electrogram deflections are typically low in
voltage.1,10,23,39,76,82,84–87 Based on the formulation of the
extracellular signal, the thinness of the viable myocardium
is directly responsible for the diminished amplitude
observed in the electrogram deflections because of the
decreased volume of activating myocytes.84,88,89 Central or
midisthmus electrograms also tend to be relatively short in
duration.88 Short electrogram deflections are indicative of a
faster activation wavefront.88 Although the wavefront is
slowed overall in the infarct border zone and in the circuit,66

the isthmus long axis tends to orient approximately in parallel
to muscle fibers,77 in which direction the wavefront conduc-
tion velocity is fastest, which would account for the faster
speed observed there during VT. Late potentials recorded
at the midisthmus have a lower amplitude and shorter dura-
tion compared to bystander sites, and they are predictive of
location.35,90,91 Where slow conduction is evident at turning
points, electrograms are also low in voltage and long in dura-
tion due to the reduced velocity.35 Both VT and sinus rhythm
low-voltage electrograms have been used to empirically
guide a standard ablation catheter toward the isthmus,59,92–94

although these electrogram features are not always specific to
the isthmus region.

The low-voltage characteristic of electrograms acquired
from the isthmus is consistent with the observation that dense
scar overlaps these recording sites.10,20,87 Because scar tissue
is completely unexcitable when only a very small number of
myocytes are present in the scar that forms the isthmus, the
electrograms generated will exhibit a particularly low voltage
level.86 However, scar and the thinness of the surviving re-
gion are not the only factors contributing to the low electro-
gram voltage; substrate remodeling in the form of gap
junction and ion channel alteration is also important to
consider.1 The overall diminished voltage levels generated
when the isthmus activates are such that the diastolic interval
of VT, during which diastolic electrogram potentials are
generated,85 does not significantly contribute to ECG signal
deflections.76,95 The diastolic potentials of VT, which are
defined as any distinct electrogram components inscribed af-
ter the surface QRS complex, partially correspond to loca-
tions of late potentials observed during sinus rhythm.96

However, the absence of sinus rhythm late potentials does
not guarantee the absence of arrhythmogenic pathways.97

In canine postinfarction, sinus rhythm electrograms at the
midisthmus location are low in amplitude, they tend to be
short in duration, and they can also be biphasic.98

Examples of central isthmus electrogram formation and
characteristics are illustrated in Figure 2, with activation
maps indicative of the direction of wavefront propagation
from early to late (colors from red to violet). The observed
properties are in agreement with the mechanism of
extracellular signal generation in myocardial tissue.88 In
Figure 2A, the bipolar electrode is denoted by circled sym-
bols (1 and –). Here the electrogram is of low amplitude in
a region of thin border zone (left side). Elsewhere in the
infarct border zone, the viable tissue is thicker (right side),
such that when the wavefront propagates, at any particular
time epoch a larger volume of tissue activates, thereby gener-
ating a larger-amplitude electrogram. Isthmus electrograms
recorded with a bipolar electrode often are narrow, indicating
that the wavefront tends to be moving relatively rapidly.88

This is depicted by the travel direction (arrow) and narrow
electrogram in Figure 2B (left side). However, elsewhere in
the circuit, if the wavefront were to be traveling less rapidly
and therefore along a lesser distance per unit time, due, for
example, to being conducted more transversely with respect
to muscle fibers,66 the resulting electrogram deflection would
be wider (Figure 2B, right side).

Central isthmus bipolar electrograms can be biphasic.98

Thus, as the wavefront propagates along the viable thin
slab (Figure 2C, left side), it first arrives at the positive elec-
trode, generating a positive electrogram deflection, and then
at the negative electrode, generating a negative deflection.88

The biphasic shape of the electrogram suggests that the wave-
front is traveling through viable tissue directly beneath the
bipolar recording electrode, rather than being recorded as a
far-field effect. If, instead, the electrode were distant from
the electrically activating tissue in the configuration shown
(Figure 2C, right side) a far-field activation sequence would
produce a uniphasic deflection, with the amplitude of the sin-
gle deflection dependent on the distance between bipolar
electrode pair and the activating tissue. However, electro-
gram shape is not always indicative of near- vs far-field acti-
vation, and it can only serve as an approximate guide toward
isthmus location.



Figure 2 Isthmus electrograms tend to be low in amplitude, narrow, and biphasic. Red to violet denotes early to later activation times.A:When a thinner slab of
tissue activates (left), the resulting electrogram is low amplitude (left). However when a thicker slab of tissue activates (right), it produces a larger electrogram.B:
When wavefront propagation is rapid, a narrow electrogram is generated (left). Yet, for slower propagating wavefronts (right), the resulting electrogram is wide.
C:When the electrogram is biphasic (left), it suggests that wavefront propagation is directly beneath the electrode (left). However, a uniphasic deflection with an
amplitude dependent on location (right) indicates a far-field source.
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Lateral isthmus boundary electrogram morphology
Fractionated electrograms can be defined as either 2 discrete
deflections separated by an isoelectric interval (double poten-
tials or split deflections) or an electrogram comprising many
components.61 They are more commonly observed in pa-
tients with reentrant VT than in patients without inducible
arrhythmia.99,100 Fractionation occurs where poorly coupled
myocardium is present at regions with myocardial disarray,
often due to the proximity of fibrous tissue interspersed
with myocyte bundles.41,61,101 Thus, wherever dense scar is
identified, fractionated electrograms are often present within
or at adjacent areas.102 It also can occur wherever there is
electrical discontinuity, whether due to current-to-load
mismatch or differing excitability of coupling characteris-
tics.103 Although fractionation may be evident at any
abnormal heart region, computer modeling suggests that it
is more associated with the edges of dense scar.104 In human
VT, very slow conduction with associated long fractionated
electrograms often are present at the lateral isthmus bound-
aries.1,10,39,105 In canine postinfarction VT as well, electro-
grams acquired along lines of functional block at isthmus
lateral boundaries tend to be of long duration and fraction-
ated.52,75,89 Based on the sharp change in border zone thick-
ness there and the resulting impedance mismatch,
fractionation can appear at these locations during sinus
rhythm as well as during VT.89,98 In canine postinfarction,
temporal changes in fractionated electrogram shape, and
therefore alterations in the slow discontinuous wavefront
propagation pattern from which they are generated, are
evident at the boundaries during both VT and sinus
rhythm.106,107 In both clinical and canine VT, fractionation
at the lateral boundaries becomes more pronounced when
the wavefront impinges from the perpendicular direc-
tion.89,105

Should portions of the main activation wavefront of the
circuit begin to propagate across the lateral isthmus bound-
aries when they are composed of functional conduction
block, they would travel slowly enough so that breakthrough
does not ordinarily occur.10,39 Such traversal-going wave-
fronts are stopped by the main wavefront as it swings around
the outer pathway to the other side of the circuit loop.1,29,36

Wherever fractionated electrograms are demonstrated in
healed canine infarcts, the conduction velocity may decrease
to as low as 0.04 mm/ms.61 This degree of slowness would
preclude wavefront breakthrough across the lateral bound-
aries at typical VT cycle lengths, due to the quicker return
of the main wavefront to the other side of the boundary.
Hence, outward at the boundaries, although functional block
often is evident, in actuality, very slow wavefront propaga-
tion may be proceeding across.29,89 Due to anisotropic con-
duction, when the wavefront travel direction across the
boundaries is transverse to myocardial fibers, there is addi-
tional slowing, further supporting the maintenance of the
reentrant circuit.52 Yet, breakthrough across the boundaries
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can, in fact, occur should the VT cycle length substantially
prolong.36 The presence of wavefront propagation in
different directions on opposite sides of a boundary line
has been termed pseudoblock.108

A schematic diagram of the electrical discontinuity that
can be present at the lateral isthmus boundaries is shown in
Figure 3. The main wavefront of the circuit (labeled mw)
propagates along the isthmus long axis and tends to be longi-
tudinally conducted with respect to muscle fibers, but other
components of the wave tend to be transversely conducting
across the lateral boundaries (labeled tc). A small area of
the boundary is shown magnified, with the enlarged map de-
picting early activation in red and latest activation in violet. In
Figure 3A (right side), the wavefront propagates rapidly in
segment a, propagates somewhat more slowly in segment
b, and propagates very slowly in segment d. Thus, the wave-
front becomes discontinuous, in accordance with generation
of the extracellular signal.88 The bipolar electrode from
which the electrogram is acquired is noted by black circles
in proximity to the center of the slab (Figure 3A, right
side). At the early fast segment labeled a, the first electro-
gram deflection is generated, labeled deflection a
(Figure 3A, top left). This deflection is narrow and early
because the wavefront travels rapidly through segment a
with little delay. The segment with intermediate wavefront
speed, segment b, is responsible for generation of deflection
b, which is wider and later because the wavefront is slower.
The very slow segment, segment d, is the source of deflection
d, which is very wide, very late, and also of low amplitude
because it is furthest away from the bipolar electrode.
Thus, fractionation occurs. When conduction block forms
at the boundary line (Figure 3B, gray area in enlarged section
at right), it can also be a source of discontinuity and electro-
gram fractionation. The activation wavefront propagates
around it and initially produces deflection a. Then the nega-
tive deflections are generated (b and d) as the wavefront
travels in the opposite direction. Hence, at isthmus
Figure 3 Fractionation at the isthmus boundaries is caused by discontinuous con
panel, simulated electrograms are shown at top, propagation through the reentry isth
at right. The symbols a, b, and d are used to label distinct electrogram deflections an
border. The main wavefront in the reentry isthmus is labeled as mw; transversely co
conduction velocity cause electrical discontinuity at the magnified isthmus edge, re
other wavefront dissociation, also causing fractionation.
boundaries, both wavefront slowing (Figure 3A) and wave-
front block (Figure 3B) can result in discontinuous conduc-
tion, and these phenomena are sources of electrogram
fractionation.89
Multiple reentrant VT morphologies—Isthmus
characteristics
Many patients with ischemic heart disease and VT have epi-
sodes of reentry with differing QRS morphologies that either
occur spontaneously42,109,110 or are inducible by pro-
grammed stimulation.36,109–112 Single premature stimuli
can result in induction of multiple reentrant VT
morphologies, and more aggressive stimulus protocols can
result in additional morphologies.109–112 Patients with
multiple VT morphologies are less likely to have successful
ablation treatment outcomes.113–115 This probably reflects a
more complex arrhythmia substrate in patients with failed
ablation.115 Limited, thinnest portions of the infarct border
zone are capable of forming stable lines of block forming
isthmus boundaries that are supportive of reentrant
VT.55,63,72 The same areas can serve as anchor points for
wavefront slowing and curvature events that occur in each
of the multiple possible reentrant VT morphol-
ogies,22,56,80,116 and the presence of tissue heterogeneity at
such locations is an important property of the underlying sub-
strate.56,117,118 Similar properties of multiple reentrant VT
morphologies have been observed in a canine postinfarction
model.119

Predicting the multiple reentrant VT morphologies that
will form in a particular patient is of interest for improving
treatment strategy. Differences in VT morphologies may
result from changes in entrance and exit points along the
isthmus,36,39,120 wavefront propagation around differing
lines of block, or wavefront propagation around the same
lines of block in opposite directions.1,31,119 There is often
an approximate but not precise overlap of lateral, functional
duction, with an electrical activation wavefront that slows or blocks. In each
mus is illustrated at left, and the magnified isthmus edge is illustrated in colors
d also the corresponding wavefront location at the magnified area of isthmus
nducting wavefronts are labeled tc. A: Disparities in the degree of wavefront
sulting in electrogram fractionation. B: Presence of conduction block causes
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block lines for 2 reentrant circuit morphologies in which the
wavefront travels in opposite directions during the diastolic
interval.31 The variations between circuit morphologies due
to changes in functional block are related to the programmed
stimulus location, the coupling interval between stimuli, and
the cycle length of VT.30,36

In both human and in animal postinfarction studies, it is
rare for multiple VT circuit morphologies to reside in
differing regions of the heart.109,119,121 However, patients
with multiple infarctions, in whom the total infarct size is
large, are more likely to have multiple spontaneously occur-
ring tachycardia morphologies, which can arise at distinct lo-
cations as measured by clinical criteria.109,110,119,121 In such
cases, each of multiple areas where wall thinning is observed
could be likely sources of the disparate reentrant circuits.

Related to the occurrence of multiple morphologies in VT
is the presence of pleomorphism. Precise definitions of these
factors would be as follows. Pleomorphism is the occurrence
of VT with more than 1 QRS morphology during the same
episode. The cause of pleomorphic VT is often an alteration
in the lateral isthmus boundaries with a resulting varied exit
route.35,43,119,120,122 In postinfarction patients with pleomor-
phic, hemodynamically stable VT, a shared isthmus is pre-
sent in almost one-half of patients.123 Multiple morphology
can be defined as the occurrence of VT with differing
morphology in differing episodes.124,125 However, some
groups also refer to pleomorphism using the multiple
morphology definition.
Role of transient conduction block in the isthmus
for reentry onset
Reentrant circuits are initiated by the presence of slow
conduction and unidirectional block when there is
a sufficient pathlength around inexcitable
areas.8,24,30,42,43,46,51,61,63,71,73,75,104,114,117,126–131 At VT
onset, a transient line of unidirectional block forms in
response to spontaneous or stimulated premature
excitation,30,34,36,37,42,73-75,85,128,130 or from rapid ventricular
pacing.32 Some possible mechanisms by which unidirec-
tional block occurs include differences in activation wave-
front propagation with respect to fiber orientation due to
nonuniform anisotropy, which causes differences in conduc-
tion velocity,132 discontinuities in axial resistance leading to
decremental conduction,133 heterogeneous refractory periods
of action potentials with different repolarization,117 dispar-
ities in the recovery of excitability,129 and impedance
mismatch.30,72–75

Reentry of the activation wavefront through the unidirec-
tional block line into previously excited tissue occurs when
the length of the circuit (ie, the pathlength) equals or exceeds
the wavelength, which is defined as the product of the wave-
front conduction velocity and the tissue refractory period.134

Onset of the anisotropic form of reentry, which is frequently
observed in VT, is characterized by conduction block in the
transverse direction, due in part to reduced transverse con-
ductivity, with successful conduction in the longitudinal
direction.1,22,52,56,62,64,66,101,117,135–138 A reduction in
transverse conductivity leads to slowed conduction
transverse to muscle fibers.138–140 Yet, the reentry isthmus
does not always align with muscle fibers.77 The isthmus
can be oriented off-axis to muscle fibers, and it can even be
aligned transversely.77 Hence, other mechanisms must also
be at work in the formation of functional block at lateral
boundaries.

Examples of VT induction success and failure are de-
picted in Figure 4. This schematic emphasizes that for reentry
to occur, the premature stimulus site and the resulting lines of
block are constrained to specific locations. The stimulus site
is noted by a top-hat symbol in each panel. When a pro-
grammed premature stimulus is applied during sinus rhythm,
unidirectional block does not occur at the isthmus location
shown in Figures 4A–4C; therefore, reentrant VT is not
inducible for any of these configurations. When there is a
long coupling interval between successive stimuli, each
stimulus-driven wavefront propagates through the region
without blocking (Figure 4A). However, there may be inex-
citable areas as shown by dashed lines (ie, the lateral isthmus
boundaries during VT [structural or functional]). Similarly,
when the stimulus site is within the isthmus location and
the programmed stimulus has a long coupling interval
(Figure 4B), although conduction block may be evident at
the lateral boundaries, the wavefronts can travel around and
extinguish. Were the stimulus site to reside in the outer
pathway (Figure 4C), whether at a long or a short stimulus
coupling interval, block may again occur, but the wavefronts
extinguish, this time within the isthmus region. In the lower
panels, however, conditions by which reentry can be initiated
via programmed stimulation are shown. The stimulus site
may be approximately aligned with the isthmus long-axis,
either outside (Figure 4D) or within the isthmus
(Figure 4E). When stimuli have a short coupling interval,
less than the VT cycle length, conduction block can occur
within the isthmus. When unidirectional block forms there
(dotted line), the wavefront bifurcates, 2 distinct wavefronts
travel around the line of block, they coalesce, and proceed in
the opposite direction (Figures 4D and 4E). The electrical im-
pulse thus propagates through the entranceway of what can
be termed the protoisthmus (ie, the nascent isthmus) from
the opposite direction, and, if there is time for recovery of
excitability, onset of reentry occurs.

Wherever the stimulus site is located, to cause unidirec-
tional block, the stimulated wavefront should arrive at the
area where block will form from an approximately perpendic-
ular (normal) direction.71 Although the stimulus may originate
from any location in the left or right ventricle, wavefront
arrival from an approximately perpendicular direction prob-
ably is more likely if the stimulus site is aligned and in prox-
imity to the protoisthmus exit (shaded region in Figure 5A).
Anywhere in the entire gray shaded region with the stimulus
mark shown would therefore be expected to serve as an
optimal location to cause reentry induction. Too far skewed
from the long-axis, however, and the stimulus wavefront
would not as likely impinge at the unidirectional block line



Figure 4 Unidirectional block is needed to initiate reentrant ventricular tachycardia (VT) and depends on stimulus site location and coupling interval. A–C:
Unsuccessful induction of VT. D, E: Successful induction of VT.
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location from an approximately perpendicular direction. Too
far away, and the wavefront might become discontinuous
and no longer rectilinear when it arrives at the unidirectional
block line location. When the stimulus site is more distant, 2
or 3 premature impulses may be useful to reduce the inter-
vening refractory period so that the wavefront can reach the
protoisthmus early enough to cause block. If the conditions
for premature stimulus site location are met, then the unidirec-
tional block line can form (Figure 5B), the remaining portions
of the wavefront bifurcate and coalesce, and reentry proceeds
(Figure 5C).

Impedance mismatch is one possible mechanism for the
formation of the unidirectional block line leading to
reentry.30,73–75 This depends on changes in border zone
thickness, as illustrated in Figure 5D. The thinnest border
zone occurs throughout the isthmus location and reaches a
minimum in proximity to the position where the unidirec-
tional block line will form (noted in Figure 5D as thin).
With the stimulus site at the area shown, the premature stim-
ulus wavefront will suddenly encounter thinnest-to-thicker
tissue. Functional block will form if the coupling interval
of the premature stimulus is sufficiently short and if the thin-
nest region is on the order of 500 mm or less in thick-
ness.30,73–75 Encountering the region for thin-to-thicker
tissue, the wavefront becomes concave in shape, resulting
in an insufficient electric current available in the forward
direction for propagation of the activation wavefront to
continue. Therefore, the wavefront would bifurcate,
travel around as distinct wavefronts, and reenter
(Figures 5B and 5C).

Besides the restrictions on stimulus properties and the
thinness of the viable substrate, the range of isthmus size
for which reentry is inducible is also constrained. It is limited
at the lower end by the need for a sufficient pathlength to
maintain an excitable gap at the wavefront leading
edge.56,71,75,77,131 It is limited at the high end by the longest
pathlength that will not be interrupted by a sinus escape
beat75,77 or by breakthrough along the path.75
Three-dimensionality of the isthmus in reentrant
circuits
Although originally thought of and diagrammed as being 2-
dimensional, the reentry isthmus must be constrained in 3
dimensions. Because a majority of reentrant VTs are hemo-
dynamically unstable and not well tolerated, this precludes
the performance of lengthy entrainment and activation map-
ping procedures for circuit characterization.3,141,142 The dif-
ferences in the circuit between patients with tolerated vs
untolerated VT are not well understood,50 so it is not possible
to determine a priori which clinical VTs will be mappable
with a standard catheter. However, high-resolution mapping
technologies implemented in recent EP studies have been
found useful in rapidly delineating reentrant circuit character-
istics in patients,40,99,143 as well as in swine1,22,64,80,101,144

and canine models.145 This mode enables isthmus



Figure 5 A: Range of optimal sites for premature stimulation leading to reentry onset is illustrated by the gray shaded area. B: Premature stimulation.
C: Ventricular tachycardia induction. D: Infarct border zone—changes in thickness of viable substrate that are necessary for unidirectional block to occur by
impedance mismatch.
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dimensions, and the extent of the exit region recorded on both
endocardial and epicardial surfaces, to be estimated with pre-
cision and speed.40 Based on such analyses, some circuits in
clinical studies have been found to activate in a thin layer
restricted to a single myocardial surface.36,114,146 However,
reentry at depth, with either nonuniform transmural propaga-
tion, or with focal activation patterns apparent at heart sur-
faces that are consistent with the presence of
midmyocardial reentry, are also frequently observed.40,42,147

In such instances, epicardial or endocardial surface mapping
alone would fail to demonstrate a complete reentrant circuit
because the activation pathway may involve both surfaces
as well as intramural sites.40,42,148 Intramural location of
the VT isthmus is a recognized cause for endocardial or
epicardial ablation failure.148 Recordings from needle elec-
trodes have been found useful for substrate mapping of intra-
mural VT and for selecting ablation targets to interrupt the
circuit.149 In canine postinfarction with midmyocardial
reentry components, the circuit can be completed by incorpo-
rating local electrograms recorded from intramural sites with
the surface electrogram activation sequence.58 In such in-
stances, VT is reproducibly terminated by selectively
rendering intramural sites refractory with extrastimuli, criti-
cally timed to activate during the excitable gap.58
Imaging technologies are becoming increasingly relevant
for characterizing 3-dimensional left ventricular structure,
three-dimensional scar, and the border zone substrate.150

The development of imaging parameters for the quantifica-
tion of edema, infarction and scar has been followed by their
adoption for non-invasive tissue characterization in acute and
chronic MI.151 Late gadolinium enhancement enables the
direct quantification of the spatial extent of scar5,151–154

and myocardial fibrosis,17,155 and it is predictive of
fibrosis156 and risk of arrhythmia.7,118,157–159 Based on
imaging technology, wall-thinning has been shown to coloc-
alize with voltage-defined scar.150,160 Areas with severe wall
thinning noted in the imagery may be indicative of denser
scar, which act as zones of conduction block, while VT isth-
muses may reside in channels of relatively preserved thick-
ness within the scar.83 The spatial resolution of cardiac
computed tomography is on the order of 1 millimeter or
less.5,150,161 Similar spatial resolutions are achieved with car-
diac magnetic resonance imaging.162

Recently, myocardial calcifications have been detected by
cardiac computed tomography in postinfarction patients and
have been shown to be associated with VT.161 Such calcifica-
tions are not electrically excitable, so they represent an
anatomic boundary for reentrant circuits. Areas of



146 Heart Rhythm, Vol 19, No 1, January 2022
calcifications have been found to be effective ablation sites in
more than one-third of postinfarction VT patients.161

Reentrant circuits as viewed at high resolution in 3 dimen-
sions can appear in many varied forms. However, all of these
forms are distillable into a few basic patterns.74,75 When a
reentrant circuit is located at depth, it must be bounded at
the isthmus or around the entire circuit (Figure 6).
Figure 6A shows the general pattern when it is constrained
only at the isthmus. The excitable area is depicted in blue,
and the activation wavefront enters and exits from all sides
in 3 dimensions. Inexcitable tissue bordering the isthmus is
illustrated by gray color, and there may be inexcitable tissue
in the periphery as well. The reentry isthmus itself is the con-
strained region in 3 dimensions. Within the midmyocardium,
the circuit may also be completely constrained around a sin-
gle loop (Figure 6B).74,75 Within this loop, composed of a
bundle of myocytes, or channel, there is excitable tissue,
but outside and around it, and perhaps elsewhere in proximity
to the midmyocardial region, there is inexcitable tissue
(gray). The entire circuitous channel is therefore the isthmus
in Figure 6B. For onset of reentry for either of the cases
shown in Figures 6A and 6B, a bulge or dilation formed by
an increase in the diameter of the channel because of the pres-
ence of additional myocytes can lead to unidirectional block
by impedance mismatch (smaller-to-larger volume of viable
tissue) (Figure 6C).73–75 The aperture along the conduit
increases dramatically from left to right, causing
unidirectional block at short coupling intervals (dotted
line). However, if the wavefront travels from right to left
(Figure 6D), there is no such dramatic increase in aperture,
Figure 6 The isthmus must be constrained in 3 dimensions and can be midmyoc
indicate the direction of activation wavefront propagation during ventricular tachyc
programmed stimulus coupling intervals where there is a sharp distal expansion in th
and the propagating activation wavefront will not block.
which is required for functional block to form, only a gradual
increase, and the wavefront therefore persists.

Although it is evident that reentrant circuits at depth are
3-dimensional, reentry must also be constrained in 3 dimen-
sions when present at a heart surface.30,72,75 Consider the area
that forms the isthmus at a surface as depicted in Figure 7B.
The viable tissue is shown by colors, with activation from
early to late noted by red to violet colors. The wavefront,
when traveling along the subendocardium, is constrained
above by the heart chamber and beneath by the noncon-
ducting infarct (termed the no-flux condition), which is
shown in black color. This structural configuration appears,
for example, in postinfarction reentrant VT regions when
measured by cardiac magnetic resonance imaging or by his-
tologic analysis.55,63,72 The infarct area typically forms an
approximately trapezoidal shape along the isthmus long-
axis in 3 dimensions (Figure 7B, black area).30,72–75,89 There-
fore, near and at the surface where viable conducting tissue is
present, toward the center of the isthmus, the surviving layer
is thinnest (also see Figure 5D).

In the surface configuration, functional block can occur at
the lateral boundaries during reentry. Several mechanisms
may be responsible, which include changes in ion channel
and gap junctional properties55,56,66 as well as impedance
mismatch.30,72,75 With regard to impedance mismatch, wher-
ever there is a sufficiently thin volume of electrically acti-
vating tissue, with the wavefront propagating outward to a
distal expansion of viable tissue, slowing or block will occur
when the coupling interval for activation is relatively short, as
described earlier for other configurations. This region of
ardial. A: Isthmus is constrained. B: The entire circuit is constrained. Arrows
ardia. C: Unidirectional block of the activation wavefront can occur at short
e channel.D: In the opposite direction, there is no such sharp distal expansion,



Figure 7 The isthmus must be constrained in 3 dimensions and can be at the heart surface. A: Premature stimulation leading to reentry onset. B: Reentrant
ventricular tachycardia (VT). Arrows indicate direction of wavefront propagation. The wavefront blocks at the edges of gray areas because of the sharply
increased distal expansion in the direction of travel. f.b. indicates gray areas that do not electrically activate because of functional block.
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distal expansion is noted in gray in Figure 7B. When activa-
tion occurs at the very thin region denoted by blue color,
there is insufficient current to excite the much thicker gray
area; thus, functional block is manifested at the boundary
(dotted line). Although only a small segment where func-
tional block forms is shown, according to the geometry it
would actually be present along much of both lateral bound-
aries in Figure 7B. The electrical impulse must then propa-
gate through the isthmus constrained to the direction of its
long-axis, whereupon at the exit it bifurcates, travels around,
and coalesces.

To induce reentry for this 3-dimensional surface configu-
ration, a premature stimulus is needed (Figure 7A). The
coupling interval must be very short, with activation proceed-
ing away from the stimulus site (top-hat symbol). As afore-
mentioned, at very short coupling intervals the wavefront
can block at the thin-to-thicker viable tissue, the interface be-
tween blue and large gray areas in the central isthmus
(Figure 7A, longer dotted line), as well as at the lateral bound-
aries where there is a sharper thickness change (Figure 7A,
shorter dotted line).30,75,89 Hence, the wavefront must prop-
agate around, and it can then enter the isthmus region from
the other side (ie, at the protoisthmus entrance). If there is
time for recovery of excitability, onset of reentry occurs.
The circuit then perpetuates at the longer cycle length of
reentry without blocking in the isthmus (Figure 7B).
Current technology for mapping and ablation of
circuit morphologies
Ablation of VT is dependent on locating the diastolic activity
(ie, the isthmus region), which is critical for maintenance of
the reentrant circuit.3 Bipolar voltage mapping is often uti-
lized as a gold standard for electroanatomic scar delineation
during VT ablation procedures.163 It can be helpful to charac-
terize all clinically relevant VT circuits during EP study to
improve ablation outcome.141 However, decreased recur-
rence of multiple VT morphologies can also be achieved
with recently developed strategies involving extensive
homogenization of the substrate, as it represents a probabi-
listic approach for transecting key limbs of a reentrant cir-
cuit.8,164–167 Furthermore, utilizing functional information
based on wavefront propagation to identify areas of
abnormal activation has been shown to be valuable.8

Specifically targeting low-voltage electrogram sites can
eliminate reentrant VT.59,168 Yet, the definition of a normal
left ventricular endocardial voltage in patients with postin-
farct scar is still lacking.169 The values of bipolar electrogram
cutoffs are also limited by activation wavefront direction,170

and there are significant voltage differences between diago-
nally orthogonal bipolar electrode pairs at any given
recording site.171 High-density multielectrode grid catheters
can offer improvement because they enable simultaneous re-
cordings from multiple orthogonal directions with the ability
to select the largest voltage level in a small region170,172 and
can improve depiction of the diastolic pathway.173 Extensive
substrate ablation of local abnormal ventricular activity
(LAVA) evident during sinus rhythm or pacing is also uti-
lized in targeting.164,174 LAVA can be defined as a sharp,
high-frequency ventricular potential that is distinct from a
preceding or overlapping far-field deflection.164 When extra-
stimuli with decreasing coupling intervals are applied from
the right ventricular apex, LAVAs can be observed to pro-
gressively split further away from the far-field component.
Therefore, they are poorly coupled to the rest of the myocar-
dium and are considered to be indicative of local electrical ac-
tivity arising from damaged tissue.

To the present time, the success rate for VT ablation di-
minishes when multiple tachycardia morphologies are induc-
ible.20,168 Furthermore, endocardial voltage mapping has a
limited ability to detect midmyocardial or epicardial
scar.150 Because mapping and ablation of multiple target re-
gions can be difficult, many patients have recurring episodes
after initial treatment, and they must undergo repeat proced-
ures, which increase morbidity and may lead to malignant
tachycardias.20,168 Although many reentrant circuit locations
are associated with endocardial scar, some are linked with
epicardial scar as well.40,59,94,175,176 Therefore, mapping of
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both endocardial and epicardial surfaces can improve the ef-
ficacy of ablation procedures when the circuit is not localized
to 1 heart surface.40,59 The detection of midmyocardial or
subepicardial scar by magnetic resonance scanning is helpful
to identify patients who are likely to require epicardial map-
ping for successful abolition of VT.177,178 Cardiac imaging
and mapping techniques have recently been used to identify
targets for noninvasive external beam radioablation.179 Thus
it may be possible to develop a completely noninvasive
method for VT ablation.

Many clinical EP ablation procedures are based on sinus
rhythm activation mapping and analysis.180 Measurements
of conduction velocity during sinus rhythm can provide func-
tional and structural insight into the initiation and perpetua-
tion of arrhythmia.181 The isthmus long-axis is often
aligned with the principal direction of wavefront propagation
during sinus rhythm.35,45,98,116 After infarction, the region in
proximity to the isthmus, which is remodeled,62,66 exhibits
slow and uniform conduction during sinus rhythm, as is
observed in both clinical studies and in canine and swine
postinfarction.22,31,36,80,98,116,182 The slowing can result
from alterations in conduction properties, from fibrosis,
and/or from changes in collagen texture.66,183 During EP
study, regions with steep activation slowing during normal
sinus rhythm are predictive of VT termination sites.184 Tar-
geting of slow conduction regions propagating into late acti-
vation is also a promising strategy for substrate
modification.22,31,36,80,98,116 However, this strategy largely
accounts for isthmus sites that are formed by fixed anatomic
barriers and usually correspond to bipolar voltage amplitude
,0.5 mV. Yet, because of the nonuniform anisotropic tissue
properties, isthmus sites may form in other areas with seem-
ingly normal conduction during sinus rhythm. These may be
revealed by stimulation from different directions or coupling
intervals.23 Furthermore, ablation strategies guided by elim-
ination of all areas of steep activation slowing as identified
during sinus rhythm and stimulation of the LV from different
directions has resulted in improved clinical outcomes
compared to ablation at sites of activation slowing during
sinus rhythm alone. The ability to identify surrogates during
sinus rhythm to localize arrhythmogenic regions may further
improve as the relationship between scar wavefront propaga-
tion patterns and abnormal electrograms becomes clearer.8

Myocardial regions with late or fractionated sinus
rhythm potentials are abnormal, but not all such areas coin-
cide with the VT diastolic pathway.185 If an extrastimulus
originating from the right ventricle significantly delays
onset of these features, they are termed decrement evoked
potentials.185,186 The position of the substrate from which
they are acquired has been found to colocalize with the
VT diastolic pathway, and, after its ablation, ischemic car-
diomyopathy patients exhibited a lower incidence of VT
recurrence.185,186 Similarly, right ventricular extrastimula-
tion during sinus rhythm can be used to elicit evoked con-
duction delay of low-voltage near-field potentials.187

Ablation of this substrate in post-MI patients with small
or nontransmural scar improves outcome.
When multiple VT morphologies can be elicited by pro-
grammed stimulation during EP study, sinus rhythm map-
ping suggests that there can be a common anchor point,
centered at a region with late activation.22,36,80,116 The direc-
tion of propagation through each isthmus during reentry par-
allels a direction proceeding away from the anchor point,
where sinus rhythm activation is late (serving as the isthmus
entrance area), toward regions with early sinus rhythm acti-
vation (serving as the isthmus exit area).22,31,36,80,98,116 The
anchor, being late-activating during sinus rhythm, may stabi-
lize the pathway from which stimuli can initiate multiple
reentrant circuit morphologies that begin at the common
point.22,80 Tissue properties at the region of late sinus rhythm
activation would be expected to be abnormal so that activa-
tion there is more likely to be delayed during premature exci-
tation, serving to initiate VT.22,80,116
Future directions for mapping and ablation of
circuit morphologies
The benefit of catheter ablation in reentrant VT patients with
structural heart disease is well known, with freedom from
recurrence approaching 70%.188 However, the success rate
with this procedure has plateaued, despite advances in both
mapping catheter technology and electroanatomic mapping
systems.188,189 High-density, multielectrode catheters can
enhance the possibility of detailed activation mapping of
even poorly tolerated VTs because they can be produced in
a reasonable time frame. It has recently been shown that in
patients with a fully mappable diastolic pathway recording,
after an ablative procedure there is higher freedom from
VT recurrence.188 In such circumstances, creating a transect-
ing ablation line to target the narrowest isthmus where the
electrical impulse is most constrained can be used to prevent
VT reinduction with minimized patient risk. Yet, even with
advanced techniques, complete VT isthmus mapping is un-
achievable in several circumstances,188 such as (1) progres-
sive hemodynamic deterioration requiring pace termination;
(2) catheter-induced termination with inability to reinduce
the clinical VT; (3) presence of an intramural substrate; and
(4) presence of an epicardial substrate in cases where epicar-
dial access is contraindicated. The contraindications for
epicardial access include pericarditis, femoral pseudoaneur-
ysm, and cardiac tamponade.188 When VT isthmus mapping
is incomplete, if diastolic activity is missing on the endocar-
dial surface, epicardial mappingmay provide the missing link
to record the entire diastolic pathway. When no compete dia-
stolic pathway is evident, substrate-guided ablation has
become the method of choice to guide procedures. The abla-
tion strategies that have been developed include scar homog-
enization, scar dechanneling, targeting zones of isochronal
crowding, elimination of near-field activity, and elimination
of late potentials at sites of conduction slowing during sinus
rhythm,188,189 although efficacy is limited. Moreover, abla-
tion success is in part dependent on the indicator used,
such as contact force and impedance drop, which are imper-
fect measures to determine the irreversible loss of cellular
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excitability needed to interrupt the circuit by myocardial
heating with temperatures .50�C.189

Although not yet realized, there is the potential for a well-
placed ablation lesion no more than several centimeters
across to abolish all inducible VTs in patients,92 and this
has been shown in canine31,98,119 and swine118 postinfarction
models. A recently developed technique termed core isola-
tion may prove useful for eliminating all possible VT mor-
phologies that can occur, although it involves more
extensive ablation.102,189 It is performed by defining the pu-
tative isthmus and early exit sites. Areas of dense scar with
the presence of low-amplitude electrograms are the criteria
used to define the core region. After core elements of the
VT circuit are identified, they can then be ablated circumfer-
entially with the goal of achieving electric isolation.102 Suc-
cessful isolation of the core is then demonstrated by exit
block from within the entire isolated region.
Practical implications and recommendations for
the clinical electrophysiologist
With the advent of rapid, high-resolution mapping, it is
possible to speed the process for discerning the arrhythmo-
genic region where the reentrant VT isthmus forms and
then to ablate across the area where the wavefront is con-
strained during the diastolic interval in order to interrupt
the circuit. The several paradigms for targeting ablation sites
as described herein may become more efficacious in prevent-
ing VT reinduction when used with high-resolution mapping
technology, which streamlines information-gathering so that
a decision on where and how to ablate can may be rapidly
made. Yet, there is a need for improved interpretation of
endocardial and epicardial activation maps arising from a
midmyocardial or transmurally situated reentrant circuit.
There is also a need to improve technologies for the actual
mapping of such circuits in clinical patients. Based on both
computer modeling and clinical observations, the narrowest
isthmus is an ideal point to ablate in patients with single
VTmorphologies. Finding this region may involve the detec-
tion and use of areas of conduction slowing during sinus
rhythm as a preliminary guide. How to best ablate substrates
in which multiple clinical reentrant morphologies are induc-
ible is undetermined as yet and is an important area for future
research efforts.
Summary and conclusion
Treatment of postinfarction VT caused by a reentrant circuit
is an important clinical problem in which the electrical con-
duction pathway must be interrupted to prevent reinduction
of arrhythmia. Early as well as ongoing studies in canine
and swine animal models are generally supportive of clinical
findings in regard to this topic. The properties common to
many reentrant circuits are manifold. Typically, a single- or
double-loop pattern is observed. Bipolar electrograms re-
corded from within the central isthmus region tend to be
low in voltage, narrower in width, and biphasic, whereas at
the lateral isthmus boundaries and at points of wavefront
turning, fractionated electrograms with longer duration are
more commonly observed. These electrogram properties
may be useful for targeting arrhythmogenic zones with abla-
tion energy during substrate mapping. Increasing the accu-
racy of substrate mapping, however, may require
stimulation at different locations with a variety of coupling
intervals to more closely simulate the VT activation
pattern.190 For reentrant VT induction, a short premature
stimulus coupling interval and unidirectional block are
needed, with the stimulus site location usually being toward
the protoisthmus exit. Depending on stimulus site location
and coupling interval, there is the possibility that multiple
reentrant circuit morphologies may arise from a common
origin due to the presence of structural heterogeneity.
Although reentrant circuits typically are diagrammed as be-
ing 2-dimensional, the isthmus is, in fact, 3-dimensionally
constrained, whether it forms midmyocardially or at a heart
surface, or is transmural. Functional block can form lateral
isthmus boundaries when there is a sharp change from thin-
nest to thicker border zone or in response to alterations in
ion channel and gap junctional properties. Anatomic lines
of block may arise and form parts or all of the lateral isthmus
boundaries wherever there is substantial fibrosis or calcifica-
tion.
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