9 research outputs found
In vivo construction of recombinant molecules within the Caenorhabditis elegans germ line using short regions of terminal homology
Homologous recombination provides a means for the in vivo construction of recombinant DNA molecules that may be problematic to assemble in vitro. We have investigated the efficiency of recombination within the Caenorhabditis elegans germ line as a function of the length of homology between recombining molecules. Our findings indicate that recombination can occur between molecules that share only 10 bp of terminal homology, and that 25 bp is sufficient to mediate relatively high levels of recombination. Recombination occurs with lower efficiency when the location of the homologous segment is subterminal or internal. As in yeast, recombination can also be mediated by either single- or double-stranded bridging oligonucleotides. We find that ligation between cohesive ends is highly efficient and does not require that the ends be phosphorylated; furthermore, precise intermolecular ligation between injected molecules that have blunt ends can also occur within the germ line
Routine Opt-Out HIV Testing Strategies in a Female Jail Setting: A Prospective Controlled Trial
Background: Ten million Americans enter jails annually. The objective was to evaluate new CDC guidelines for routine optout HIV testing and examine the optimal time to implement routine opt-out HIV testing among newly incarcerated jail detainees. Methods: This prospective, controlled trial of routine opt-out HIV testing was conducted among 323 newly incarcerated female inmates in Connecticut’s only women’s jail. 323 sequential entrants to the women’s jail over a five week period in August and September 2007 were assigned to be offered routine opt-out HIV testing at one of three points after incarceration: immediate (same day, n = 108), early (next day, n = 108), or delayed (7 days, n = 107). The primary outcome was the proportion of women in each group consenting to testing. Results: Routine opt-out HIV testing was significantly highest (73%) among the early testing group compared to 55 % for immediate and 50 % for 7 days post-entry groups. Other factors significantly (p = 0.01) associated with being HIV tested were younger age and low likelihood of early release from jail based on bond value or type of charge for which women were arrested. Conclusions: In this correctional facility, routine opt-out HIV testing in a jail setting was feasible, with highest rates of testing if performed the day after incarceration. Lower testing rates were seen with immediate testing, where there is a high prevalence of inability or unwillingness to test, and with delayed testing, where attrition from jail increases with each passing day
Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects
<p>Abstract</p> <p>Background</p> <p>Neural tube defects (NTDs) are common birth defects (~1 in 1000 pregnancies in the US and Europe) that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., <it>MTHFR</it> rs1801133 (677 C > T) and <it>MTHFD1</it> rs2236225 (R653Q)) have been found to increase NTD risk. We hypothesized that variants in additional folate/B12 pathway genes contribute to NTD risk.</p> <p>Methods</p> <p>A tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents), including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects.</p> <p>Results</p> <p>Nearly 70 SNPs in 30 genes were found to be associated with NTDs at the p < 0.01 level. The ten strongest association signals (p-value range: 0.0003–0.0023) were found in nine genes (<it>MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1</it> and <it>T (Brachyury)</it>) and included the known NTD risk factor <it>MTHFD1</it> R653Q (rs2236225). The single strongest signal was observed in a new candidate, <it>MFTC</it> rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele). Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing.</p> <p>Conclusions</p> <p>To our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the stringency of correction are likely to have contributed to real associations failing to survive correction. We have produced a ranked list of variants with the strongest association signals. Variants in the highest rank of associations are likely to include true associations and should be high priority candidates for further study of NTD risk.</p