154 research outputs found

    The Brightening of Re50N: Accretion Event or Dust Clearing?

    Full text link
    The luminous Class I protostar HBC 494, embedded in the Orion A cloud, is associated with a pair of reflection nebulae, Re50 and Re50N, which appeared sometime between 1955 and 1979. We have found that a dramatic brightening of Re50N has taken place sometime between 2006 and 2014. This could result if the embedded source is undergoing a FUor eruption. However, the near-infrared spectrum shows a featureless very red continuum, in contrast to the strong CO bandhead absorption displayed by FUors. Such heavy veiling, and the high luminosity of the protostar, is indicative of strong accretion but seemingly not in the manner of typical FUors. We favor the alternative explanation that the major brightening of Re50N and the simultaneous fading of Re50 is caused by curtains of obscuring material that cast patterns of illumination and shadows across the surface of the molecular cloud. This is likely occurring as an outflow cavity surrounding the embedded protostar breaks through to the surface of the molecular cloud. Several Herbig-Haro objects are found in the region.Comment: 8 pages, accepted by Ap

    A Disk Shadow Around the Young Star ASR 41 in NGC 1333

    Full text link
    We present images of the young stellar object ASR 41 in the NGC 1333 star forming region at the wavelengths of H_alpha and [SII] and in the I, J, H, and K-bands. ASR 41 has the near-infrared morphology of an edge-on disk object, but appears an order of magnitude larger than typical systems of this kind. We also present detailed models of the scattering and radiative transfer in systems consisting of a young star surrounded by a proto-planetary disk, and the whole system being embedded in either an infalling envelope or a uniform molecular cloud. The best fit to the observed morphology can be achieved with a disk of approx. 200 AU diameter, immersed in a low density cloud. The low cloud density is necessary to stay below the sub-mm flux upper limits and to preserve the shadow cast by the disk via single scattering. The results demonstrate that ASR 41 is probably not inherently different from typical edge-on disk objects, and that its large apparent size is due to the shadow of a much smaller disk being projected into the surrounding dusty molecular material

    Protection associated with a TB vaccine is linked to increased frequency of Ag85A-specific CD4<sup>+</sup> T cells but no increase in avidity for Ag85A

    Get PDF
    AbstractThere is a need to improve the efficacy of Bacille Calmette-Guérin (BCG) vaccination against tuberculosis in humans and cattle. Previously, we found boosting BCG-primed cows with recombinant human type 5 adenovirus expressing antigen 85A (Ad5-85A) increased protection against Mycobacterium bovis infection compared to BCG vaccination alone. The aim of this study was to decipher aspects of the immune response associated with this enhanced protection. We compared BCG-primed Ad5-85A-boosted cattle with BCG-vaccinated cattle. Polyclonal CD4+ T cell libraries were generated from pre-boost and post-boost peripheral blood mononuclear cells – using a method adapted from Geiger et al. (2009) – and screened for antigen 85A (Ag85A) specificity. Ag85A-specific CD4+ T cell lines were analysed for their avidity for Ag85A and their Ag85A epitope specificity was defined. Boosting BCG with Ad5-85A increased the frequencies of post-boost Ag85A-specific CD4+ T cells which correlated with protection (reduced pathology). Boosting Ag85A-specific CD4+ T cell responses did not increase their avidity. The epitope specificity was variable between animals and we found no clear evidence for a post-boost epitope spreading. In conclusion, the protection associated with boosting BCG with Ad5-85A is linked with increased frequencies of Ag85A-specific CD4+ T cells without increasing avidity or widening of the Ag85A-specific CD4+ T cell repertoire

    HH 222: A Giant Herbig-Haro Flow from the Quadruple System V380 Ori

    Get PDF
    keywords: Herbig-Haro objects, ISM: individual objects: HH 222, ISM: jets and outflows, proper motions, stars: individual: V380 Ori, stars: pre-main sequence eid: 118 adsurl: http://adsabs.harvard.edu/abs/2013AJ....146..118R adsnote: Provided by the SAO/NASA Astrophysics Data SystemarticleHH 222 is a giant shocked region in the L1641 cloud, and is popularly known as the Orion Streamers or "the waterfall" on account of its unusual structure. At the center of these streamers are two infrared sources coincident with a nonthermal radio jet aligned along the principal streamer. The unique morphology of HH 222 has long been associated with this radio jet. However, new infrared images show that the two sources are distant elliptical galaxies, indicating that the radio jet is merely an improbable line-of-sight coincidence. Accurate proper motion measurements of HH 222 reveal that the shock structure is a giant bow shock moving directly away from the well-known, very young, Herbig Be star V380 Ori. The already known Herbig-Haro object HH 35 forms part of this flow. A new Herbig-Haro object, HH 1041, is found precisely in the opposite direction of HH 222 and is likely to form part of a counterflow. The total projected extent of this HH complex is 5.3 pc, making it among the largest HH flows known. A second outflow episode from V380 Ori is identified as a pair of HH objects, HH 1031 to the northwest and the already known HH 130 to the southeast, along an axis that deviates from that of HH 222/HH 1041 by only 3fdg7. V380 Ori is a hierarchical quadruple system, including a faint companion of spectral type M5 or M6, which at an age of ~1 Myr corresponds to an object straddling the stellar-to-brown dwarf boundary. We suggest that the HH 222 giant bow shock is a direct result of the dynamical interactions that led to the conversion from an initial non-hierarchical multiple system into a hierarchical configuration. This event occurred no more than 28,000 yr ago, as derived from the proper motions of the HH 222 giant bow shock.Association of Universities for Research in Astronomy, IncNational Science FoundationNational Aeronautics and Space Administration through the NASA Astrobiology Institut

    Molecular hydrogen jets and outflows in the Serpens south filamentary cloud

    Full text link
    We aimed to map the jets and outflows from the Serpens South star forming region and find an empirical relationship between the magnetic field and outflow orientation. Near-infrared H2 v=1-0 S(1) 2.122{\mu}m -line imaging of the \sim 30'-long filamentary shaped Serpens South star forming region was carried out. K s broadband imaging of the same region was used for continuum subraction. Candidate driving sources of the mapped jets/outflows are identified from the list of known protostars and young stars in this region, which was derived from studies using recent Spitzer and Herschel telescope observations. 14 Molecular Hydrogen emission-line objects(MHOs) are identified using our continuum-subtracted images. They are found to constitute ten individual flows. Out of these, nine flows are located in the lower-half(southern) part of the Serpens South filament, and one flow is located at the northern tip of the filament. Four flows are driven by well-identified Class 0 protostars, while the remaining six flows are driven by candidate protostars mostly in the Class I stage, based on the Spitzer and Herschel observations. The orientation of the outflows is systematically perpendicular to the direction of the near-infrared polarization vector, recently published in the literature. No significant correlation was observed between the orientation of the flows and the axis of the filamentary cloud.Comment: Accepted by A&A for publication. 7 pages, 5 figure

    Alcelaphine herpesvirus 1 genes A7 and A8 regulate viral spread and are essential for malignant catarrhal fever

    Get PDF
    Alcelaphine herpesvirus 1 (AlHV-1) is a gammaherpesvirus that is carried asymptomatically by wildebeest. Upon cross-species transmission to other ruminants, including domestic cattle, AlHV-1 induces malignant catarrhal fever (MCF), which is a fatal lymphoproliferative disease resulting from proliferation and uncontrolled activation of latently infected CD8+ T cells. Two laboratory strains of AlHV-1 are used commonly in research: C500, which is pathogenic, and WC11, which has been attenuated by long-term maintenance in cell culture. The published genome sequence of a WC11 seed stock from a German laboratory revealed the deletion of two major regions. The sequence of a WC11 seed stock used in our laboratory also bears these deletions and, in addition, the duplication of an internal sequence in the terminal region. The larger of the two deletions has resulted in the absence of gene A7 and a large portion of gene A8. These genes are positional orthologs of the Epstein-Barr virus genes encoding envelope glycoproteins gp42 and gp350, respectively, which are involved in viral propagation and switching of cell tropism. To investigate the degree to which the absence of A7 and A8 participates in WC11 attenuation, recombinant viruses lacking these individual functions were generated in C500. Using bovine nasal turbinate and embryonic lung cell lines, increased cell-free viral propagation and impaired syncytia formation were observed in the absence of A7, whereas cell-free viral spread was inhibited in the absence of A8. Therefore, A7 appears to be involved in cell-to-cell viral spread, and A8 in viral cell-free propagation. Finally, infection of rabbits with either mutant did not induce the signs of MCF or the expansion of infected CD8+ T cells. These results demonstrate that A7 and A8 are both essential for regulating viral spread and suggest that AlHV-1 requires both genes to efficiently spread in vivo and reach CD8+ T lymphocytes and induce MCF

    Modeling the Multiwavelength Evolution of the V960 Mon System

    Full text link
    We study the evolution of the FU Ori object V960 Mon since its outburst, using available multi-wavelength photometric time series over 8 years, complemented by several epochs of moderate-dispersion spectrophotometry. We find that the source fading can be well-described by a decrease in the temperature of the inner disk, which results from a combination of decreasing accretion rate and increasing inner disk radius. We model the system with a disk atmosphere model that produces the observed variations in multi-band photometry (this paper) and high resolution spectral lines (a companion paper).Comment: 15 pages, 13 figures, 2 tables, Accepted to Ap
    • …
    corecore