229 research outputs found

    PEDOT:PSS/Graphene Nanocomposite Hole-Injection Layer in Polymer Light-Emitting Diodes

    Get PDF
    We report on effects of doping graphene in poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate), PEDOT:PSS, as a PEDOT:PSS/graphene nanocomposite hole injection layer on the performance enhancement of polymer light-emitting diodes (PLEDs). Graphene oxides were first synthesized and then mixed in the PEDOT:PSS solution with specifically various amounts. Graphenes were reduced in the PEDOT:PSS matrix through thermal reduction. PLED devices with hole-injection nanocomposite layer containing particular doping concentration were fabricated, and the influence of doping concentration on device performance was examined by systematically characterizations of various device properties. Through the graphene doping, the resistance in the hole-injection layer and the turn-on voltage could be effectively reduced that benefited the injection and transport of holes and resulted in a higher overall efficiency. The conductivity of the hole-injection layer was monotonically increased with the increase of doping concentration, performance indices from various aspects, however, did not show the same dependence because faster injected holes might alter not only the balance of holes and electrons but also their combination locations in the light-emitting layer. Results show that optimal doping concentration was the case with 0.03 wt% of graphene oxide

    Discovering Chromatin Motifs using FAIRE Sequencing and the Human Diploid Genome

    Get PDF
    Background: Specific chromatin structures are associated with active or inactive gene transcription. The gene regulatory elements are intrinsically dynamic and alternate between inactive and active states through the recruitment of DNA binding proteins, such as chromatin-remodeling proteins. Results: We developed a unique genome-wide method to discover DNA motifs associated with chromatin accessibility using formaldehyde-assisted isolation of regulatory elements with high-throughput sequencing (FAIRE-seq). We aligned the FAIRE-seq reads to the GM12878 diploid genome and subsequently identified differential chromatin-state regions (DCSRs) using heterozygous SNPs. The DCSR pairs represent the locations of imbalances of chromatin accessibility between alleles and are ideal to reveal chromatin motifs that may directly modulate chromatin accessibility. In this study, we used DNA 6-10mer sequences to interrogate all DCSRs, and subsequently discovered conserved chromatin motifs with significant changes in the occurrence frequency. To investigate their likely roles in biology, we studied the annotated protein associated with each of the top ten chromatin motifs genome-wide, in the intergenic regions and in genes, respectively. As a result, we found that most of these annotated motifs are associated with chromatin remodeling, reflecting their significance in biology. Conclusions: Our method is the first one using fully phased diploid genome and FAIRE-seq to discover motifs associated with chromatin accessibility. Our results were collected to construct the first chromatin motif database (CMD), providing the potential DNA motifs recognized by chromatin-remodeling proteins and is freely available at http://syslab.nchu.edu.tw/chromatin

    Flux dependent MeV self-ion- induced effects on Au nanostructures: Dramatic mass transport and nano-silicide formation

    Full text link
    We report a direct observation of dramatic mass transport due to 1.5 MeV Au2+ ion impact on isolated Au nanostructures of an average size 7.6 nm and a height 6.9 nm that are deposited on Si (111) substrate under high flux (3.2x10^10 to 6.3x10^12 ions cm-2 s-1) conditions. The mass transport from nanostructures found to extend up to a distance of about 60 nm into the substrate, much beyond their size. This forward mass transport is compared with the recoil implantation profiles using SRIM simulation. The observed anomalies with theory and simulations are discussed. At a given energy, the incident flux plays a major role in mass transport and its re-distribution. The mass transport is explained on the basis of thermal effects and creation of rapid diffusion paths at nano-scale regime during the course of ion irradiation. The unusual mass transport is found to be associated with the formation of gold silicide nanoalloys at sub-surfaces. The complexity of the ion-nanostructure interaction process has been discussed with a direct observation of melting (in the form of spherical fragments on the surface) phenomena. The transmission electron microscopy, scanning transmission electron microscopy and Rutherford backscattering spectroscopy methods have been used.Comment: 16 pages, 6 Figure

    The fermion dynamical symmetry model for the even--even and even--odd nuclei in the Xe--Ba region

    Full text link
    The even--even and even--odd nuclei 126^{126}Xe-132^{132}Xe and 131^{131}Ba-137^{137}Ba are shown to have a well-realized SO8SO6SO3SO_8 \supset SO_6 \supset SO_3 fermion dynamical symmetry. Their low-lying energy levels can be described by a unified analytical expression with two (three) adjustable parameters for even--odd (even--even) nuclei that is derived from the fermion dynamical symmetry model. Analytical expressions are given for wavefunctions and for E2E2 transition rates that agree well with data. The distinction between the FDSM and IBM SO6SO_6 limits is discussed. The experimentally observed suppression of the the energy levels with increasing SO5SO_5 quantum number τ\tau can be explained as a perturbation of the pairing interaction on the SO6SO_6 symmetry, which leads to an SO5SO_5 Pairing effect for SO6SO_6 nuclei.Comment: submitted to Phys. Rev. C, LaTeX, 31 pages, 8 figures with postscript files available on request at [email protected]

    The influence of long-term treadmill exercise on bone mass and articular cartilage in ovariectomized rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Loss of bone quality and deterioration of articular cartilage are commonly seen after menopause. While exercise may protect against tissue degeneration, a clear link has yet to be established. The aim of the present study is to investigate the influence of long-term treadmill exercise on changes in bone mass and articular cartilage in ovariectomized rats.</p> <p>Methods</p> <p>Sixty female Sprague-Dawley rats were randomly assigned to 4 groups: ovariectomized (OVX), ovariectomized plus treadmill exercise (OVX-RUN), treadmill exercise alone (RUN), and control (CON) groups. After 36 weeks, the following variables were compared among the 4 groups. Bone mass was evaluated by trabecular bone volume and bone mineral density (BMD). Articular cartilage in the knee joints was evaluated by histology analysis and a modified Mankin score.</p> <p>Results</p> <p>Rats in the ovariectomized groups (OVX and OVX-RUN) had significantly lower BMD and bone mass than the non-ovariectomized rats (CON and RUN), indicating that exercise did little to preserve bone mass. However, the sedentary OVX group had a significantly worse modified Mankin score (7.7 ± 1.4) than the OVX-RUN group (4.8 ± 1.0), whose scores did not differ significantly from the other 2 non-operated groups. The articular cartilage in the sedentary OVX rats was relatively thinner, hypocellular, and had more clefts than in the other 3 groups.</p> <p>Conclusion</p> <p>This study suggests that long-term exercise protects articular cartilage in OVX rats but does not retard the loss of bone mass seen in after menopause.</p

    TCMGeneDIT: a database for associated traditional Chinese medicine, gene and disease information using text mining

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traditional Chinese Medicine (TCM), a complementary and alternative medical system in Western countries, has been used to treat various diseases over thousands of years in East Asian countries. In recent years, many herbal medicines were found to exhibit a variety of effects through regulating a wide range of gene expressions or protein activities. As available TCM data continue to accumulate rapidly, an urgent need for exploring these resources systematically is imperative, so as to effectively utilize the large volume of literature.</p> <p>Methods</p> <p>TCM, gene, disease, biological pathway and protein-protein interaction information were collected from public databases. For association discovery, the TCM names, gene names, disease names, TCM ingredients and effects were used to annotate the literature corpus obtained from PubMed. The concept to mine entity associations was based on hypothesis testing and collocation analysis. The annotated corpus was processed with natural language processing tools and rule-based approaches were applied to the sentences for extracting the relations between TCM effecters and effects.</p> <p>Results</p> <p>We developed a database, TCMGeneDIT, to provide association information about TCMs, genes, diseases, TCM effects and TCM ingredients mined from vast amount of biomedical literature. Integrated protein-protein interaction and biological pathways information are also available for exploring the regulations of genes associated with TCM curative effects. In addition, the transitive relationships among genes, TCMs and diseases could be inferred through the shared intermediates. Furthermore, TCMGeneDIT is useful in understanding the possible therapeutic mechanisms of TCMs via gene regulations and deducing synergistic or antagonistic contributions of the prescription components to the overall therapeutic effects. The database is now available at <url>http://tcm.lifescience.ntu.edu.tw/</url>.</p> <p>Conclusion</p> <p>TCMGeneDIT is a unique database that offers diverse association information on TCMs. This database integrates TCMs with biomedical studies that would facilitate clinical research and elucidate the possible therapeutic mechanisms of TCMs and gene regulations.</p

    Household secondhand smoke exposure of elementary schoolchildren in Southern Taiwan and factors associated with their confidence in avoiding exposure: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure to household Secondhand Smoke (SHS) poses a major health threat to children after an indoor smoking ban was imposed in Taiwan. This study aimed to assess the household SHS exposure in elementary school children in southern Taiwan and the factors associated with their avoidance of SHS exposure before and after the implementation of Taiwan's new Tobacco Hazards Prevention Act in 2009.</p> <p>Methods</p> <p>In this cross-sectional school-based study, data on household SHS exposure, avoidance of SHS and related variables was obtained from the 2008 and 2009 Control of School-aged Children Smoking Study Survey. A random sample of 52 elementary schools was included. A total of 4450 3-6 graders (aged 8-13) completed the questionnaire. Regression models analyzed factors of children's self-confidence to avoid household SHS exposure.</p> <p>Results</p> <p>Over 50% of children were found to have lived with a family member who smoked in front of them after the new law enacted, and 35% of them were exposed to household SHS more than 4 days a week. Having a positive attitude toward smoking (β = -0.05 to -0.06) and high household SHS exposure (β = -0.34 to -0.47) were significantly associated with a lower avoidance of SHS exposure. Comparing to girls, boys had lower scores in their knowledge of tobacco hazards; and this factor was significantly related to their SHS avoidance (β = 0.13-0.14).</p> <p>Conclusions</p> <p>The intervention program should enhance school children do actively avoid exposure to SHS in home settings, and more importantly, provide tobacco hazard knowledge to male students to avoid exposure to household SHS for themselves. The results also provide further evidence that Tobacco Hazards Prevention Act should perhaps be extended to the family environment in order to protect children from the hazards of household SHS exposure.</p

    Visible Light Responsive Photocatalyst Induces Progressive and Apical-Terminus Preferential Damages on Escherichia coli Surfaces

    Get PDF
    BACKGROUND: Recent research shows that visible-light responsive photocatalysts have potential usage in antimicrobial applications. However, the dynamic changes in the damage to photocatalyzed bacteria remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: Facilitated by atomic force microscopy, this study analyzes the visible-light driven photocatalyst-mediated damage of Escherichia coli. Results show that antibacterial properties are associated with the appearance of hole-like structures on the bacteria surfaces. Unexpectedly, these hole-like structures were preferentially induced at the apical terminus of rod shaped E. coli cells. Differentiating the damages into various levels and analyzing the percentage of damage to the cells showed that photocatalysis was likely to elicit sequential damages in E. coli cells. The process began with changing the surface properties on bacterial cells, as indicated in surface roughness measurements using atomic force microscopy, and holes then formed at the apical terminus of the cells. The holes were then subsequently enlarged until the cells were totally transformed into a flattened shape. Parallel experiments indicated that photocatalysis-induced bacterial protein leakage is associated with the progression of hole-like damages, further suggesting pore formation. Control experiments using ultraviolet light responsive titanium-dioxide substrates also obtained similar observations, suggesting that this is a general phenomenon of E. coli in response to photocatalysis. CONCLUSION/SIGNIFICANCE: The photocatalysis-mediated localization-preferential damage to E. coli cells reveals the weak points of the bacteria. This might facilitate the investigation of antibacterial mechanism of the photocatalysis
    corecore