16 research outputs found

    Asymptotic solvers for ordinary differential equations with multiple frequencies

    Get PDF
    We construct asymptotic expansions for ordinary differential equations with highly oscillatory forcing terms, focusing on the case of multiple, non-commensurate frequencies. We derive an asymptotic expansion in inverse powers of the oscillatory parameter and use its truncation as an exceedingly effective means to discretize the differential equation in question. Numerical examples illustrate the effectiveness of the method

    Amplitude and Frequency Control: Stability of Limit Cycles in Phase-Shift and Twin-T Oscillators

    No full text
    We show a technique for external direct current (DC) control of the amplitudes of limit cycles both in the Phase-shift and Twin-T oscillators. We have found that amplitudes of the oscillator output voltage depend on the DC control voltage. By varying the total impedance of each oscillator oscillatory network, frequencies of oscillations are controlled using potentiometers. The main advantage of the proposed circuits is that both the amplitude and frequency of the waveforms generated can be independently controlled. Analytical, numerical, and experimental methods are used to determine the boundaries of the states of the oscillators. Equilibrium points, stable limit cycles, and divergent states are found. Analytical results are compared with the numerical and experimental solutions, and a good agreement is obtained
    corecore