16 research outputs found

    Identifying Consensus Disease Pathways in Parkinson's Disease Using an Integrative Systems Biology Approach

    Get PDF
    Parkinson's disease (PD) has had six genome-wide association studies (GWAS) conducted as well as several gene expression studies. However, only variants in MAPT and SNCA have been consistently replicated. To improve the utility of these approaches, we applied pathway analyses integrating both GWAS and gene expression. The top 5000 SNPs (p<0.01) from a joint analysis of three existing PD GWAS were identified and each assigned to a gene. For gene expression, rather than the traditional comparison of one anatomical region between sets of patients and controls, we identified differentially expressed genes between adjacent Braak regions in each individual and adjusted using average control expression profiles. Over-represented pathways were calculated using a hyper-geometric statistical comparison. An integrated, systems meta-analysis of the over-represented pathways combined the expression and GWAS results using a Fisher's combined probability test. Four of the top seven pathways from each approach were identical. The top three pathways in the meta-analysis, with their corrected p-values, were axonal guidance (p = 2.8E-07), focal adhesion (p = 7.7E-06) and calcium signaling (p = 2.9E-05). These results support that a systems biology (pathway) approach will provide additional insight into the genetic etiology of PD and that these pathways have both biological and statistical support to be important in PD

    The Pathway Coexpression Network: Revealing pathway relationships.

    Get PDF
    A goal of genomics is to understand the relationships between biological processes. Pathways contribute to functional interplay within biological processes through complex but poorly understood interactions. However, limited functional references for global pathway relationships exist. Pathways from databases such as KEGG and Reactome provide discrete annotations of biological processes. Their relationships are currently either inferred from gene set enrichment within specific experiments, or by simple overlap, linking pathway annotations that have genes in common. Here, we provide a unifying interpretation of functional interaction between pathways by systematically quantifying coexpression between 1,330 canonical pathways from the Molecular Signatures Database (MSigDB) to establish the Pathway Coexpression Network (PCxN). We estimated the correlation between canonical pathways valid in a broad context using a curated collection of 3,207 microarrays from 72 normal human tissues. PCxN accounts for shared genes between annotations to estimate significant correlations between pathways with related functions rather than with similar annotations. We demonstrate that PCxN provides novel insight into mechanisms of complex diseases using an Alzheimer's Disease (AD) case study. PCxN retrieved pathways significantly correlated with an expert curated AD gene list. These pathways have known associations with AD and were significantly enriched for genes independently associated with AD. As a further step, we show how PCxN complements the results of gene set enrichment methods by revealing relationships between enriched pathways, and by identifying additional highly correlated pathways. PCxN revealed that correlated pathways from an AD expression profiling study include functional clusters involved in cell adhesion and oxidative stress. PCxN provides expanded connections to pathways from the extracellular matrix. PCxN provides a powerful new framework for interrogation of global pathway relationships. Comprehensive exploration of PCxN can be performed at http://pcxn.org/

    Fetal Alz-50 clone 1 (FAC1) protein interacts with the myc-associated zinc finger protein (ZF87/MAZ) and alters its transcriptional activity

    No full text
    Transcription factors mediate their regulatory effects through interaction with DNA and numerous nuclear proteins. The fetal Alz-50 clone I (FAC1) protein, a novel DNA-binding protein with the capacity to repress transcription, is likely to function through a similar mechanism (1). Using the two-hybrid yeast screen, we have shown that FAC1 interacts with the myc- associated zinc finger protein (ZF87/MAZ). This association was confirmed in vitro with recombinant protein. The ZF87/MAZ interaction domain was mapped to the region containing a putative nuclear localization signal (NLS) and nuclear export sequence (NES) of FAC1, using deletion mutants of the FAC1 protein. FAC1, on the other hand, recognizes a conformational interface that includes the proline/alanine-rich domain of ZF87/MAZ and the first zinc finger. Cotransfection of NIH3T3 cells with ZF87/MAZ and a luciferase reporter containing the SV40 promoter and enhancer results in an increase in transcriptional activation, suggesting ZF87/MAZ is able to recognize its consensus binding site present in the SV40 promoter. Cotransfection with FAC1 reduces the level of ZF87/MAZ-induced activation of the SV40 promoter in a dose dependent manner. A mutant FAC1, lacking the ZF87/MAZ interaction domain, does not alter ZF87/MAZ activation of the SV40 promoter. These data demonstrate that interaction between FAC1 and ZF87/MAZ alters the transactivation capacity of ZF87/MAZ. By immunoblot analysis, FAC1 and ZF87/MAZ exhibit similar tissue distribution and co-localize to pathologic structures in Alzheimer\u27s disease brain. Coexpression of FAC1 and ZF87/MAZ suggest that interaction of these two proteins will have biological implications for gene regulation in neurodegeneration

    The septin CDCrel-1 binds syntaxin and inhibits exocytosis

    No full text
    Septins are GTPases required for the completion of cytokinesis in diverse organisms, yet their roles in cytokinesis or other cellular processes remain unknown. Here we describe studies of a newly identified septin, CDCrel-1, which is predominantly expressed in the nervous system. This protein was associated with membrane fractions, and a significant fraction of the protein copurified and coprecipitated with synaptic vesicles. In detergent extracts, CDCrel-1 and another septin, Nedd5, immunoprecipitated with the SNARE protein syntaxin by directly binding to syntaxin via the SNARE interaction domain. Transfection of HIT-T15 cells with wild-type CDCrel-1 inhibited secretion, whereas GTPase dominant-negative mutants enhanced secretion. These data suggest that septins may regulate vesicle dynamics through interactions with syntaxin

    Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder

    No full text
    There is evidence for both similarity and distinction in the presentation and molecular characterization of schizophrenia and bipolar disorder. In this study, we characterized protein abnormalities in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder using two-dimensional gel electrophoresis. Tissue samples were obtained from 35 individuals with schizophrenia, 35 with bipolar disorder and 35 controls. Eleven protein spots in schizophrenia and 48 in bipolar disorder were found to be differentially expressed (P<0.01) in comparison to controls, with 7 additional spots found to be altered in both diseases. Using mass spectrometry, 15 schizophrenia-associated proteins and 51 bipolar disorder-associated proteins were identified. The functional groups most affected included synaptic proteins (7 of the 15) in schizophrenia and metabolic or mitochondrial-associated proteins (25 of the 51) in bipolar disorder. Six of seven synaptic-associated proteins abnormally expressed in bipolar disorder were isoforms of the septin family, while two septin protein spots were also significantly differentially expressed in schizophrenia. This finding represented the largest number of abnormalities from one protein family. All septin protein spots were upregulated in disease in comparison to controls. This study provides further characterization of the synaptic pathology present in schizophrenia and of the metabolic dysfunction observed in bipolar disorder. In addition, our study has provided strong evidence implicating the septin protein family of proteins in psychiatric disorders for the first time
    corecore