7 research outputs found

    Dielectric quantification of conductivity limitations due to nanofiller size in conductive powders and nanocomposites,” Physical Review B,

    Get PDF
    Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Conducting submicron particles are well suited as filler particles in nonconducting polymer matrices to obtain a conducting composite with a low percolation threshold. Going to nanometer-sized filler particles imposes a restriction to the conductivity of the composite, due to the reduction of the density of states involved in the hopping process between the particles, compared to its value within the crystallites. We show how those microscopic parameters that govern the charge-transport processes across many decades of length scales can accurately and consistently be determined by a range of dielectric-spectroscopy techniques from a few hertz to infrared frequencies. The method, which is suited for a variety of systems with restricted geometries, is applied to densely packed 7-nm-sized tin oxide crystalline particles with various degree of antimony doping and the quantitative results unambiguously show the role of the nanocrystal charging energy in limiting the hopping process

    Dielectric quantification of conductivity limitations due to nanofiller size in conductive powders and nanocomposites

    Get PDF
    Conducting submicron particles are well-suited as filler particles in non-conducting polymer matrices to obtain a conducting composite with a low percolation threshold. Going to nanometer-sized filler particles imposes a restriction to the conductivity of the composite, due to the reduction of the density of states involved in the hopping process between the particles, compared to its value within the crystallites. We show how those microscopic parameters that govern the charge-transport processes across many decades of length scales, can accurately and consistently be determined by a range of dielectric-spectroscopy techniques from a few Hz to infrared frequencies. The method, which is suited for a variety of systems with restricted geometries, is applied to densely packed 7-nm-sized tin-oxide crystalline particles with various degree of antimony doping and the quantitative results unambiguously show the role of the nanocrystal charging energy in limiting the hopping process.Comment: 6 pages, 4 figure

    Photocatalysed (Meth)acrylate Polymerization by (Antimony-Doped) Tin Oxide Nanoparticles and Photoconduction of Their Crosslinked Polymer Nanoparticle Composites

    Get PDF
    In the absence of another (photo)radical initiator Sb:SnO 2 nanoparticles (0 ≤ Sb ≤ 13 at %) photocatalyze during irradiation with UV light the radical polymerization of (meth)acrylate monomers. When cured hard and transparent (>98%) films with a low haze (<1%) are required, when these particles are grafted in advance with 3-methacryloxypropyltrimethoxysilane (MPS) and doped with Sb. Public knowledge about the photocatalytic properties of Sb:SnO 2 nanoparticles is hardly available. Therefore, the influence of particle concentration, surface groups, and Sb doping on the rate of C=C (meth)acrylate bond polymerization was determined with aid of real-time FT-IR spectroscopy. By using a wavelength of irradiation with a narrow bandgab (315 ± 5 nm) the influence of these factors on the quantum yield (Φ) and on polymer and particle network structure formation was determined. It is shown that Sb doping and MPS grafting of the particles lowers Φ. MPS grafting of the particles also influences the structure of the polymer network formed. Without Sb doping of these particles unwanted, photocatalytic side reactions occur. It is also shown that cured MPS-Sb:SnO 2 /(meth)acrylate nanocomposites have photoconduction properties even when the particle concentration is as low as 1 vol.%. The results suggest that the Sb:SnO 2 (Sb > 0 at %) nanoparticles can be attractive fillers for other photocatalytic applications photorefractive materials, optoelectronic devices and sensors
    corecore