227 research outputs found

    The Serre spectral sequence of a noncommutative fibration for de Rham cohomology

    Full text link
    For differential calculi on noncommutative algebras, we construct a twisted de Rham cohomology using flat connections on modules. This has properties similar, in some respects, to sheaf cohomology on topological spaces. We also discuss generalised mapping properties of these theories, and relations of these properties to corings. Using this, we give conditions for the Serre spectral sequence to hold for a noncommutative fibration. This might be better read as giving the definition of a fibration in noncommutative differential geometry. We also study the multiplicative structure of such spectral sequences. Finally we show that some noncommutative homogeneous spaces satisfy the conditions to be such a fibration, and in the process clarify the differential structure on these homogeneous spaces. We also give two explicit examples of differential fibrations: these are built on the quantum Hopf fibration with two different differential structures.Comment: LaTeX, 33 page

    Obturator Artery Aneurysm

    Get PDF
    AbstractWe present a case of a symptomatic obturator artery aneurysm. The patient was investigated for a possible rectal tumor. The final diagnosis was made during surgery, despite the presence of imaging studies. The operation consisted of simple ligation of inflow and outflow of the aneurysm. Satisfying early and long term result indicates that this is a sufficient operative procedure in such an aneurysm

    Quantum teardrops

    Full text link
    Algebras of functions on quantum weighted projective spaces are introduced, and the structure of quantum weighted projective lines or quantum teardrops are described in detail. In particular the presentation of the coordinate algebra of the quantum teardrop in terms of generators and relations and classification of irreducible *-representations are derived. The algebras are then analysed from the point of view of Hopf-Galois theory or the theory of quantum principal bundles. Fredholm modules and associated traces are constructed. C*-algebras of continuous functions on quantum weighted projective lines are described and their K-groups computed.Comment: 18 page

    Canonical quantization of a particle near a black hole

    Get PDF
    We discuss the quantization of a particle near an extreme Reissner-Nordstrom black hole in the canonical formalism. This model appears to be described by a Hamiltonian with no well-defined ground state. This problem can be circumvented by a redefinition of the Hamiltonian due to de Alfaro, Fubini and Furlan (DFF). We show that the Hamiltonian with no ground state corresponds to a gauge in which there is an obstruction at the boundary of spacetime requiring a modification of the quantization rules. The redefinition of the Hamiltonian a la DFF corresponds to a different choice of gauge. The latter is a good gauge leading to standard quantization rules. Thus, the DFF trick is a consequence of a standard gauge-fixing procedure in the case of black hole scattering.Comment: 13 pages, ReVTeX, no figure

    Empiric Models of the Earth's Free Core Nutation

    Full text link
    Free core nutation (FCN) is the main factor that limits the accuracy of the modeling of the motion of Earth's rotational axis in the celestial coordinate system. Several FCN models have been proposed. A comparative analysis is made of the known models including the model proposed by the author. The use of the FCN model is shown to substantially increase the accuracy of the modeling of Earth's rotation. Furthermore, the FCN component extracted from the observed motion of Earth's rotational axis is an important source for the study of the shape and rotation of the Earth's core. A comparison of different FCN models has shown that the proposed model is better than other models if used to extract the geophysical signal (the amplitude and phase of FCN) from observational data.Comment: 8 pages, 3 figures; minor update of the journal published versio

    Quantization of maximally-charged slowly-moving black holes

    Full text link
    We discuss the quantization of a system of slowly-moving extreme Reissner-Nordstrom black holes. In the near-horizon limit, this system has been shown to possess an SL(2,R) conformal symmetry. However, the Hamiltonian appears to have no well-defined ground state. This problem can be circumvented by a redefinition of the Hamiltonian due to de Alfaro, Fubini and Furlan (DFF). We apply the Faddeev-Popov quantization procedure to show that the Hamiltonian with no ground state corresponds to a gauge in which there is an obstruction at the singularities of moduli space requiring a modification of the quantization rules. The redefinition of the Hamiltonian a la DFF corresponds to a different choice of gauge. The latter is a good gauge leading to standard quantization rules. Thus, the DFF trick is a consequence of a standard gauge-fixing procedure in the case of black hole scattering.Comment: Corrected errors in the gauge-fixing procedur

    Four problems regarding representable functors

    Full text link
    Let RR, SS be two rings, CC an RR-coring and RCM{}_{R}^C{\mathcal M} the category of left CC-comodules. The category Rep(RCM,SM){\bf Rep}\, ( {}_{R}^C{\mathcal M}, {}_{S}{\mathcal M} ) of all representable functors RCMSM{}_{R}^C{\mathcal M} \to {}_{S}{\mathcal M} is shown to be equivalent to the opposite of the category RCMS{}_{R}^C{\mathcal M}_S. For UU an (S,R)(S,R)-bimodule we give necessary and sufficient conditions for the induction functor UR:RCMSMU\otimes_R - : {}_{R}^C\mathcal{M} \to {}_{S}\mathcal{M} to be: a representable functor, an equivalence of categories, a separable or a Frobenius functor. The latter results generalize and unify the classical theorems of Morita for categories of modules over rings and the more recent theorems obtained by Brezinski, Caenepeel et al. for categories of comodules over corings.Comment: 16 pages, the second versio

    On Iterated Twisted Tensor Products of Algebras

    Full text link
    We introduce and study the definition, main properties and applications of iterated twisted tensor products of algebras, motivated by the problem of defining a suitable representative for the product of spaces in noncommutative geometry. We find conditions for constructing an iterated product of three factors, and prove that they are enough for building an iterated product of any number of factors. As an example of the geometrical aspects of our construction, we show how to construct differential forms and involutions on iterated products starting from the corresponding structures on the factors, and give some examples of algebras that can be described within our theory. We prove a certain result (called ``invariance under twisting'') for a twisted tensor product of two algebras, stating that the twisted tensor product does not change when we apply certain kind of deformation. Under certain conditions, this invariance can be iterated, containing as particular cases a number of independent and previously unrelated results from Hopf algebra theory.Comment: 44 pages, 21 figures. More minor typos corrections, one more example and some references adde

    Towards Spinfoam Cosmology

    Get PDF
    We compute the transition amplitude between coherent quantum-states of geometry peaked on homogeneous isotropic metrics. We use the holomorphic representations of loop quantum gravity and the Kaminski-Kisielowski-Lewandowski generalization of the new vertex, and work at first order in the vertex expansion, second order in the graph (multipole) expansion, and first order in 1/volume. We show that the resulting amplitude is in the kernel of a differential operator whose classical limit is the canonical hamiltonian of a Friedmann-Robertson-Walker cosmology. This result is an indication that the dynamics of loop quantum gravity defined by the new vertex yields the Friedmann equation in the appropriate limit.Comment: 8 page

    Pre-torsors and Galois comodules over mixed distributive laws

    Full text link
    We study comodule functors for comonads arising from mixed distributive laws. Their Galois property is reformulated in terms of a (so-called) regular arrow in Street's bicategory of comonads. Between categories possessing equalizers, we introduce the notion of a regular adjunction. An equivalence is proven between the category of pre-torsors over two regular adjunctions (NA,RA)(N_A,R_A) and (NB,RB)(N_B,R_B) on one hand, and the category of regular comonad arrows (RA,ξ)(R_A,\xi) from some equalizer preserving comonad C{\mathbb C} to NBRBN_BR_B on the other. This generalizes a known relationship between pre-torsors over equal commutative rings and Galois objects of coalgebras.Developing a bi-Galois theory of comonads, we show that a pre-torsor over regular adjunctions determines also a second (equalizer preserving) comonad D{\mathbb D} and a co-regular comonad arrow from D{\mathbb D} to NARAN_A R_A, such that the comodule categories of C{\mathbb C} and D{\mathbb D} are equivalent.Comment: 34 pages LaTeX file. v2: a few typos correcte
    corecore