27 research outputs found

    Introduction to the Interpersonal Discrimination Model Applied to Clinical Supervision: A Relational Approach for Novice Counselors

    Get PDF
    This manuscript explores the theory development of a new clinical supervision model called the Interpersonal Discrimination Model (IPDM). The IPDM combines the structure of the Discrimination Model of supervision (Bernard, 1979) with Interpersonal Theory tenets developed by Harry Sullivan (1968) to create a holistic, integrated approach to clinical supervision. The IPDM’s foundation is based on the supervisory working alliance, which has been continuously found to contribute to supervisee satisfaction, an increase in counselor self-efficacy and a positive therapeutic working alliance (Park et al., 2019). The IPDM has three main applications-interpersonal process recall, the parallel process, countertransference-that are applied in clinical supervision to enhance supervisees’ self-awareness and to improve client outcomes. This manuscript explores a) a literature review on the supervisory working alliance and relational approaches to clinical supervision, b) an introduction and rationale for the IPDM and the integration of Interpersonal Theory within the Discrimination Model, and c) application of the IPDM in a case study including strategies and recommendations of how to intervene utilizing the model

    Error analysis for Mariner Venus/Mercury 1973 conducted at the JPL Mesa west antenna range

    Get PDF
    Theoretical analysis and experimental data are combined to yield the errors to be used with antenna gain, antenna patterns, and RF cable insertion loss measurements for the Mariner Venus-Mercury 1973 Flight Project. These errors apply to measurements conducted at the JPL Mesa, West Antenna Range, on the high gain antenna, low gain antenna, and RF coaxial cables

    Organic Reference Materials for Hydrogen, Carbon, and Nitrogen Stable Isotope-Ratio Measurements: Caffeines, n-Alkanes, Fatty Acid Methyl Esters, Glycines, L-Valines, Polyethylenes, and Oils

    Get PDF
    An international project developed, quality-tested, and determined isotope−δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope−δ scales. The RMs span a range of δ^2H_(VSMOW-SLAP) values from −210.8 to +397.0 mUr or ‰, for δ^(13)C_(VPDB-LSVEC) from −40.81 to +0.49 mUr and for δ^(15)N_(Air) from −5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C_(16) n-alkanes, n-C_(20)-fatty acid methyl esters (FAMEs), glycines, and L-valines, together with polyethylene powder and string, one n-C_(17)-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a ^2H-enriched vacuum oil. A total of 11 laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic normalization against international primary measurement standards. The use of reference waters in silver tubes allowed direct normalization of δ2H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Because of exchangeable hydrogen, amino acid RMs currently are recommended only for carbon- and nitrogen-isotope measurements. Some amino acids contain ^(13)C and carbon-bound organic ^2H-enrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies

    Medium – Media – Post-media

    No full text

    Ideologies in HCI: A Semiotic Perspective

    No full text

    On the complementarity and informative value of different electron ionization mass spectrometric techniques for the chemical analysis of secondary Organic aerosols.

    No full text
    The atmospheric aging of volatile organic compounds leads to the formation of complex mixtures of highly oxidized secondary organic aerosols (SOAs). State-of-the-art mass spectrometry (MS) has become a pivotal tool for their chemical characterization. In this study, we characterized the chemical complexity of naphthalene-derived SOA by three different time-of-flight (TOF) mass spectrometric techniques applying electron ionization: high-resolution-TOF-aerosol MS (AMS), direct inlet probe (DIP)-high-resolution TOFMS, and thermal desorption-comprehensive two-dimensional gas chromatography-TOFMS (GC × GC). We discuss AMS as an online, DIP as an atline, and GC × GC as an offline technique to compare their informative value for studying the oxidation state, volatility, and molecular composition of laboratory-generated SOA. For GC × GC, the accessible organic content was limited to (semi-)volatile compounds and supported a reliable assignment of the molecular composition. DIP and AMS were used to derive secondary parameters such as O/C and H/C ratios, the general functionality of the compound classes and their abundance upon photochemical aging. Thereby, while the induced pyrolysis in the AMS extended the accessibility range to polar, high-molecular-weight compounds, thermal fragmentation also led to limited molecular information. For DIP, low-volatility compounds could be volatilized and the high mass resolution was useful to resolve isobaric mass fragments and assign reliable sum formulas of fragments and molecular ions. Although no single technique can provide information to describe the full chemical complexity of the SOA, AMS, DIP, and GC × GC in their complementarity are well suited to investigate the impact of SOA on health and environment

    Regulatory changes in pterin and carotenoid genes underlie balanced color polymorphisms in the wall lizard

    No full text
    Reptiles use pterin and carotenoid pigments to produce yellow, orange, and red colors. These conspicuous colors serve a diversity of signaling functions, but their molecular basis remains unresolved. Here, we show that the genomes of sympatric color morphs of the European common wall lizard (Podarcis muralis), which differ in orange and yellow pigmentation and in their ecology and behavior, are virtually undifferentiated. Genetic differences are restricted to two small regulatory regions near genes associated with pterin [sepiapterin reductase (SPR)] and carotenoid [beta-carotene oxygenase 2 (BCO2)] metabolism, demonstrating that a core gene in the housekeeping pathway of pterin biosynthesis has been coopted for bright coloration in reptiles and indicating that these loci exert pleiotropic effects on other aspects of physiology. Pigmentation differences are explained by extremely divergent alleles, and haplotype analysis revealed abundant transspecific allele sharing with other lacertids exhibiting color polymorphisms. The evolution of these conspicuous color ornaments is the result of ancient genetic variation and cross-species hybridization
    corecore