4,055 research outputs found

    A Plasma Instability Theory of Gamma-Ray Burst Emission

    Get PDF
    A new theory for gamma-ray burst radiation is presented. In this theory, magnetic fields and relativistic electrons are created through plasma processes arising as a relativistic shell passes through the interstellar medium. The gamma-rays are produced through synchrotron self-Compton emission. It is found that shocks do not arise in this theory, and that efficient gamma-ray emission only occurs for a high Lorentz factor and a high-density interstellar medium. The former explains the absence of gamma-ray bursts with thermal spectra. The latter provides the Compton attenuation theory with an explanation of why the interstellar medium density is always high. The theory predicts the existence of a class of extragalactic optical transient that emit no gamma-rays.Comment: Presented at the 20 Texas Symposium on Relativistic Astrophysics, December 1998, Paris, France. To appear on the proceedings compact dis

    Analysis of thermal environment in the thrustor cavity of space vehicles

    Get PDF
    Wind tunnel tests to determine the mechanisms involved in producing the high local heating rates in and around the thrustor nozzle in a non-firing condition are reported. The geometry of a typical nozzle installation is described. Procedures for reducing the effects of hypersonic flow interactions in order to prevent excess local heating are explained

    Synchrotron Self Absorption in GRB Afterglow

    Full text link
    GRB afterglow is reasonably described by synchrotron emission from relativistic blast waves at cosmological distances. We perform detailed calculations taking into account the effect of synchrotron self absorption. We consider emission from the whole region behind the shock front, and use the Blandford McKee self similar solution to describe the fluid behind the shock. We calculate the spectra and the observed image of a GRB afterglow near the self absorption frequency νa\nu_a and derive an accurate expression for νa\nu_a. We show that the image is rather homogeneous for ν<νa\nu<\nu_a, as opposed to the bright ring at the outer edge and dim center, which appear at higher frequencies. We compare the spectra we obtain to radio observations of GRB970508. We combine the calculations of the spectra near the self absorption frequency with other parts of the spectra and obtain revised estimates for the physical parameters of the burst: E52=0.53E_{52}=0.53, ϵe=0.57\epsilon_e=0.57, ϵB=0.0082\epsilon_B=0.0082, n1=5.3n_1=5.3. These estimates are different by up to two orders of magnitude than the estimates based on an approximate spectrum.Comment: 19 page latex file including 6 figures and 1 tabl

    Galaxy-Galaxy Lensing by Non-Spherical Haloes I:Theoretical Considerations

    Full text link
    We use Monte Carlo simulations to investigate the theory of galaxy-galaxy lensing by non-spherical dark matter haloes. The simulations include a careful accounting of the effects of multiple deflections. In a typical data set where the mean tangential shear of sources with redshifts zs ~ 0.6 is measured with respect to the observed symmetry axes of foreground galaxies with redshifts zl ~ 0.3, the signature of anisotropic galaxy-galaxy lensing differs substantially from the expectation that one would have in the absence of multiple deflections. The observed ratio of the mean tangential shears, g+/g-, is strongly suppressed compared to the function that one would measure if the intrinsic symmetry axes of the foreground galaxies were known. Depending upon the characteristic masses of the lenses, the observed ratio of the mean tangential shears may be consistent with an isotropic signal (despite the fact that the lenses are non-spherical), or it may even be reversed from the expected signal (i.e., the mean tangential shear for sources close to the observed minor axes of the lenses may exceed the mean tangential shear for sources close to the observed major axes of the lenses). These effects are caused primarily by the fact that the lens galaxies have, themselves, been lensed and therefore the observed symmetry axes of the lenses differ from their intrinsic symmetry axes. The effects of lensing of the foreground galaxies on the observed function g+/g- cannot be eliminated by the rejection of foreground galaxies with small image ellipticities, nor by focusing the analysis on sources that are located very close to the observed symmetry axes of the foreground galaxies. We conclude that any attempt to use a measurement of g+/g- to constrain the shapes of dark matter galaxy haloes must include Monte Carlo simulations that take multiple deflections properly into account.Comment: 15 pages, 17 figures, submitted to MNRAS, full manuscript with high-resolution version of Fig. 4 can be found at http://firedrake.bu.edu/preprints/preprints.htm

    Cosmological gamma-ray burst model

    Get PDF
    A cosmological gamma-ray burst model that reproduces the observed gamma-ray spectra was developed. This model, which is an outgrowth of work on synchrotron emission from cosmological sources, creates the observed spectra from a power law spectrum through Compton attenuation in dense molecular clouds. It restricts the burst source to the centers of galaxies, and it is easily tested through comparisons with time dependent burst spectra. Dr. Brainerd continued development of a Monte Carlo code that tracks the random walk of a gamma-ray through a plasma in a strong magnetic field and used this code to show that a two temperature plasma in a strong magnetic field can suppress soft x-ray emission

    Time Dependent Clustering Analysis of the Second BATSE Gamma-Ray Burst Catalog

    Get PDF
    A time dependent two-point correlation-function analysis of the BATSE 2B catalog finds no evidence of burst repetition. As part of this analysis, we discuss the effects of sky exposure on the observability of burst repetition and present the equation describing the signature of burst repetition in the data. For a model of all burst repetition from a source occurring in less than five days we derive upper limits on the number of bursts in the catalog from repeaters and model-dependent upper limits on the fraction of burst sources that produce multiple outbursts.Comment: To appear in the Astrophysical Journal Letters, uuencoded compressed PostScript, 11 pages with 4 embedded figure
    • …
    corecore