524 research outputs found

    Rapidity and pt dependence of identified-particle elliptic flow at RHIC

    Get PDF
    Elliptic flow has been measured by the BRAHMS experiment as a function of transverse momentum and pseudorapidity for the Au+Au reaction at sqrt[s_{NN}] = 200 GeV. Identified-particle v2 (eta, pt) values were obtained with the two BRAHMS spectrometers at pseudorapidities eta approximately equal to 0, 1, and 3.4. The results show that the differential v2(eta, pt) values for a given particle type are essentially constant over the covered pseudorapidity range. It is suggested that the dominant cause of the observed fall-off of the integral v2 values going away from mid-rapidity is a corresponding softening of the particle spectra .Comment: 4 pages, 2figure, Quark Matter 2006 parallel session contributio

    BRAHMS Overview

    Full text link
    A brief review of BRAHMS measurements of bulk particle production in RHIC Au+Au collisions at sNN=200GeV\sqrt{s_{NN}}=200GeV is presented, together with some discussion of baryon number transport. Intermediate pTp_{T} measurements in different collision systems (Au+Au, d+Au and p+p) are also discussed in the context of jet quenching and saturation of the gluon density in Au ions at RHIC energies. This report also includes preliminary results for identified particles at forward rapidities in d+Au and Au+Au collisions.Comment: 8 pages 6 figures, Invited plenary talk at 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPAQGP 2005), Salt Lake City, Kolkata, India, 8-12 Feb 200

    Formation of van der Waals molecules in buffer gas cooled magnetic traps

    Get PDF
    We show that a large class of helium-containing cold polar molecules form readily in a cryogenic buffer gas, achieving densities as high as 10^12 cm^-3. We explore the spin relaxation of these molecules in buffer gas loaded magnetic traps, and identify a loss mechanism based on Landau-Zener transitions arising from the anisotropic hyperfine interaction. Our results show that the recently observed strong T^6 thermal dependence of spin change in buffer gas trapped silver (Ag) is accounted for by the formation and spin change of AgHe, thus providing evidence for molecular formation in a buffer gas trap.Comment: 4 pages, 4 figure

    Stopping and Baryon Transport in Heavy Ion Reactions

    Full text link
    In this report I will give an experimental overview on nuclear stopping in hadron collisions, and relate observations to understanding of baryon transport. Baryon number transport is not only evidenced via net-proton distributions but also by the enhancement of strange baryons near mid-rapidity. Although the focus is on high-energy data obtained from pp and heavy ions from RHIC, relevant data from SPS and ISR will be considered. A discussion how the available data at higher energy relates and gives information on baryon junction, quark-diquark breaking will be made.Comment: 8 pages, 7 figures. Invited plenary talk for the 5'th international conference on Physics and Astrophysics of Quark Gluon Plasma, February 8-12, 2005, Salt Lake City, Kolkata, Indi

    Zeeman Relaxation of Cold Atomic Iron and Nickel in Collisions with 3He

    Get PDF
    We have measured the ratio of the diffusion cross-section to the angular momentum reorientation cross-section in the colliding Fe-3He and Ni-3He systems. Nickel (Ni) and iron (Fe) atoms are introduced via laser ablation into a cryogenically cooled experimental cell containing cold (< 1 K) 3He buffer gas. Elastic collisions rapidly cool the translational temperature of the ablated atoms to the helium temperature. The cross-section ratio is extracted by measuring the decays of the atomic Zeeman sublevels. For our experimental conditions, thermal energy is comparable to the Zeeman splitting. As a result, thermal excitations between Zeeman sublevels significantly impact the observed decay. To determine the cross-section ratio accurately, we introduce a model of Zeeman state dynamics that includes thermal excitations. We find the cross-section ratio for Ni-3He = 5 x 10^3 and Fe-3He <= 3 x 10^3 at 0.75 K in a 0.8 T magnetic field. These measurements are interpreted in the context of submerged shell suppression of spin relaxation as studied previously in transition metals and rare earth atoms.Comment: 10 pages, 5 figures; submitted to Phys. Rev.

    High-flux beam source for cold, slow atoms or molecules

    Full text link
    We demonstrate and characterize a high-flux beam source for cold, slow atoms or molecules. The desired species is vaporized using laser ablation, then cooled by thermalization in a cryogenic cell of buffer gas. The beam is formed by particles exiting a hole in the buffer gas cell. We characterize the properties of the beam (flux, forward velocity, temperature) for both an atom (Na) and a molecule (PbO) under varying buffer gas density, and discuss conditions for optimizing these beam parameters. Our source compares favorably to existing techniques of beam formation, for a variety of applications.Comment: 5 Pages, 4 figure

    CGC, QCD Saturation and RHIC data (Kharzeev-Levin-McLerran-Nardi point of view)

    Full text link
    This is the talk given at the Workshop:"Focus on Multiplicitioes", Bari, Italy, 17-19 June,2004.. In this talk, we are going to discuss ion-ion and deuteron - nucleus RHIC data and show that they support, if not more, the idea of the new QCD phase: colour glass condensate with saturated parton density. .Comment: 26 pages with 33 figure

    Quark coalescence in the mid rapidity region at RHIC

    Full text link
    We utilize the ALCOR model for mid-rapidity hadron number predictions at AGS, SPS and RHIC energies. We present simple fits for the energy dependence of stopping and quark production.Comment: Talk given at SQM2001, Frankfurt, (LaTeX 8 pages, 5 .ps figs

    Relativistic hydrodynamics with strangeness production

    Full text link
    The relativistic hydrodynamic approach is used to describe production of strangeness and/or heavy quarks in ultrarelativistic heavy ion reactions. Production processes are important ingredients of dissipative effects in the hadronic liquid. Beyond viscosity also chemo- and thermo-diffusion processes are considered. This also allows to specify chemical and thermal freeze-out conditions.Comment: v.2 with minor editorial corrections, 7 pages, talk given on the SQM2007 conference, Levoca, June 24-29, 2007. To appear in the proceceeding: Journal of Physics
    • …
    corecore