345 research outputs found

    Fusion-protein-assisted protein crystallization

    Get PDF

    The distribution of different classes of nuclear localization signals (NLSs) in diverse organisms and the utilization of the minor NLS-binding site in plant nuclear import factor importin-α

    Get PDF
    The specific recognition between the import receptor importin-α and the nuclear localization signals (NLSs) is crucial to ensure the selective transport of cargoes into the nucleus. NLSs contain one or two clusters of positively-charged amino-acids, which usually bind to the major (monopartite NLSs) or both minor and major NLS-binding sites (bipartite NLSs). In our recent study, we determined the structure of importin-α1a from rice (Oryza sativa), and made two observations that suggest an increased utilization of the minor NLS-binding site in this protein. First, unlike the mammalian protein, both the major and minor NLS-binding sites are auto-inhibited in the unliganded rice protein. Second, we showed that NLSs of the 'plant-specific' class preferentially bind to the minor NLS-binding site of rice importin-α. Here, we show that a distinct group of 'minor site-specific' NLSs also bind to the minor site of the rice protein. We further show a greater enrichment of proteins containing these plant-specific' and 'minor site-specific' NLSs in the rice proteome. However, the analysis of the distribution of different classes of NLSs in diverse eukaryotes shows that in all organisms, the minor site-specific NLSs are much less prevalent than the classical monopartite and bipartite NLSs

    Towards the structure of the TIR-domain signalosome

    Get PDF
    TIR (Toll/interleukin-1 receptor/resistance protein) domains feature in animal, plant and bacterial proteins involved in innate immunity pathways and associated processes. They function through protein:protein interactions, in particular self-association and homotypic association with other TIR domains. Structures of TIR domains from all phyla have been determined, but common association modes have only emerged for plant and bacterial TIR domains, and not for mammalian TIR domains. Numerous attempts involving hybrid approaches, which have combined structural, computational, mutagenesis and biophysical data, have failed to converge onto common models of how these domains associate and function. We propose that the available data can be reconciled in the context of higher-order assembly formation, and that TIR domains function through signaling by cooperative assembly formation (SCAF)

    Enhanced perfusion following exposure to radiotherapy: a theoretical investigation

    Get PDF
    Tumour angiogenesis leads to the formation of blood vessels that are structurally and spatially heterogeneous. Poor blood perfusion, in conjunction with increased hypoxia and oxygen heterogeneity, impairs a tumour’s response to radiotherapy. The optimal strategy for enhancing tumour perfusion remains unclear, preventing its regular deployment in combination therapies. In this work, we first identify vascular architectural features that correlate with enhanced perfusion following radiotherapy, using in vivo imaging data from vascular tumours. Then, we present a novel computational model to determine the relationship between these architectural features and blood perfusion in silico. If perfusion is defined to be the proportion of vessels that support blood flow, we find that vascular networks with small mean diameters and large numbers of angiogenic sprouts show the largest increases in perfusion post-irradiation for both biological and synthetic tumours. We also identify cases where perfusion increases due to the pruning of hypoperfused vessels, rather than blood being rerouted. These results indicate the importance of considering network composition when determining the optimal irradiation strategy. In the future, we aim to use our findings to identify tumours that are good candidates for perfusion enhancement and to improve the efficacy of combination therapies

    Structure and Function of the TIR Domain from the Grape NLR Protein RPV1

    Get PDF
    The N-terminal Toll/interleukin-1 receptor/resistance protein (TIR) domain has been shown to be both necessary and sufficient for defense signaling in the model plants flax and Arabidopsis. In examples from these organisms, TIR domain self-association is required for signaling function, albeit through distinct interfaces. Here, we investigate these properties in the TIR domain containing resistance protein RPV1 from the wild grapevine Muscadinia rotundifolia. The RPV1 TIR domain, without additional flanking sequence present, is autoactive when transiently expressed in tobacco, demonstrating that the TIR domain alone is capable of cell-death signaling. We determined the crystal structure of the RPV1 TIR domain at 2.3 Å resolution. In the crystals, the RPV1 TIR domain forms a dimer, mediated predominantly through residues in the αA and αE helices ("AE" interface). This interface is shared with the interface discovered in the dimeric complex of the TIR domains from the Arabidopsis RPS4/RRS1 resistance protein pair. We show that surface-exposed residues in the AE interface that mediate the dimer interaction in the crystals are highly conserved among plant TIR domain-containing proteins. While we were unable to demonstrate self-association of the RPV1 TIR domain in solution or using yeast 2-hybrid, mutations of surface-exposed residues in the AE interface prevent the cell-death autoactive phenotype. In addition, mutation of residues known to be important in the cell-death signaling function of the flax L6 TIR domain were also shown to be required for RPV1 TIR domain mediated cell-death. Our data demonstrate that multiple TIR domain surfaces control the cell-death function of the RPV1 TIR domain and we suggest that the conserved AE interface may have a general function in TIR-NLR signaling.This research was supported by the Australian Research Council (ARC) Discovery Projects DP120100685 and DP160102244. BK is a NHMRC Research Fellow (1003325 and 1110971). SW is funded by ARC DECRA (DE160100893)

    Autoimmunity and effector recognition in Arabidopsis thaliana can be uncoupled by mutations in the RRS1‐R immune receptor

    Get PDF
    Plant nucleotide-binding leucine-rich repeat (NLR) disease resistance proteins recognize specific pathogen effectors and activate a cellular defense program. In Arabidopsis thaliana (Arabidopsis), Resistance to Ralstonia solanacearum 1 (RRS1-R) and Resistance to Pseudomonas syringae 4 (RPS4) function together to recognize the unrelated bacterial effectors PopP2 and AvrRps4. In the plant cell nucleus, the RRS1-R/RPS4 complex binds to and signals the presence of AvrRps4 or PopP2. The exact mechanism underlying NLR signaling and immunity activation remains to be elucidated. Using genetic and biochemical approaches, we characterized the intragenic suppressors of sensitive to low humidity 1 (slh1), a temperature-sensitive autoimmune allele of RRS1-R. Our analyses identified five amino acid residues that contribute to RRS1-R SLH 1 autoactivity. We investigated the role of these residues in the RRS1-R allele by genetic complementation, and found that C15 in the Toll/interleukin-1 receptor (TIR) domain and L816 in the LRR domain were also important for effector recognition. Further characterization of the intragenic suppressive mutations located in the RRS1-R TIR domain revealed differing requirements for RRS1-R/RPS4-dependent autoimmunity and effector-triggered immunity. Our results provide novel information about the mechanisms which, in turn, hold an NLR protein complex inactive and allow adequate activation in the presence of pathogens

    TRAF2 recruitment via T61 in CD30 drives NFκB activation and enhances hESC survival and proliferation.

    Get PDF
    CD30 (TNFRSF8), a tumor necrosis factor receptor family protein, and CD30 variant (CD30v), a ligand-independent form encoding only the cytoplasmic signaling domain, are concurrently overexpressed in transformed human embryonic stem cells (hESCs) or hESCs cultured in the presence of ascorbate. CD30 and CD30v are believed to increase hESC survival and proliferation through NF kappa B activation, but how this occurs is largely unknown. Here we demonstrate that hESCs that endogenously express CD30v and hESCs that artificially overexpress CD30v exhibit increased ERK phosphorylation levels, activation of the canonical NF kappa B pathway, down-regulation of the noncanonical NF kappa B pathway, and reduced expression of the full-length CD30 protein. We further find that CD30v, surprisingly, resides predominantly in the nucleus of hESC. We demonstrate that alanine substitution of a single threonine residue at position 61 (T61) in CD30v abrogates CD30v-mediated NF kappa B activation, CD30v-mediated resistance to apoptosis, and CD30v-enhanced proliferation, as well as restores normal G2/M-checkpoint arrest upon H2O2 treatment while maintaining its unexpected subcellular distribution. Using an affinity purification strategy and LC-MS, we identified TRAF2 as the predominant protein that interacts with WT CD30v but not the T61A-mutant form in hESCs. The identification of Thr-61 as a critical residue for TRAF2 recruitment and canonical NF kappa B signaling by CD30v reveals the substantial contribution that this molecule makes to overall NF kappa B activity, cell cycle changes, and survival in hESCs
    corecore