892 research outputs found

    An airport wind shear detection and warning system using Doppler radar: A feasibility study

    Get PDF
    A feasibility study was conducted to determine whether ground based Doppler radar could measure the wind along the path of an approaching aircraft with sufficient accuracy to predict aircraft performance. Forty-three PAR approaches were conducted, with 16 examined in detail. In each, Doppler derived longitudinal winds were compared to aircraft measured winds; in approximately 75 percent of the cases, the Doppler and aircraft winds were in acceptable agreement. In the remaining cases, errors may have been due to a lack of Doppler resolution, a lack of co-location of the two sampling volumes, the presence of eddy or vortex like disturbances within the pulse volume, or the presence of point targets in antenna side lobes. It was further concluded that shrouding techniques would have reduced the side lobe problem. A ground based Doppler radar operating in the optically clear air, provides the appropriate longitudinal winds along an aircraft's intended flight path

    Jet transport performance in thunderstorm wind shear conditions

    Get PDF
    Several hours of three dimensional wind data were collected in the thunderstorm approach-to-landing environment, using an instrumented Queen Air airplane. These data were used as input to a numerical simulation of aircraft response, concentrating on fixed-stick assumptions, while the aircraft simulated an instrument landing systems approach. Output included airspeed, vertical displacement, pitch angle, and a special approach deterioration parameter. Theory and the results of approximately 1000 simulations indicated that about 20 percent of the cases contained serious wind shear conditions capable of causing a critical deterioration of the approach. In particular, the presence of high energy at the airplane's phugoid frequency was found to have a deleterious effect on approach quality. Oscillations of the horizontal wind at the phugoid frequency were found to have a more serious effect than vertical wind. A simulation of Eastern flight 66, which crashed at JFK in 1975, served to illustrate the points of the research. A concept of a real-time wind shear detector was outlined utilizing these results

    Determination of the complex microwave photoconductance of a single quantum dot

    Full text link
    A small quantum dot containing approximately 20 electrons is realized in a two-dimensional electron system of an AlGaAs/GaAs heterostructure. Conventional transport and microwave spectroscopy reveal the dot's electronic structure. By applying a coherently coupled two-source technique, we are able to determine the complex microwave induced tunnel current. The amplitude of this photoconductance resolves photon-assisted tunneling (PAT) in the non-linear regime through the ground state and an excited state as well. The out-of-phase component (susceptance) allows to study charge relaxation within the quantum dot on a time scale comparable to the microwave beat period.Comment: 5.5 pages, 6 figures, accepted by Phys. Rev. B (Jan. B15 2001

    Surface Acoustic Waves and Nano–Electromechanical Systems

    Get PDF

    Josephson Junctions defined by a Nano-Plough

    Full text link
    We define superconducting constrictions by ploughing a deposited Aluminum film with a scanning probe microscope. The microscope tip is modified by electron beam deposition to form a nano-plough of diamond-like hardness, what allows the definition of highly transparent Josephson junctions. Additionally a dc-SQUID is fabricated to verify appropriate functioning of the junctions. The devices are easily integrated in mesoscopic devices as local radiation sources and can be used as tunable on-chip millimeter wave sources

    Shock Waves in Nanomechanical Resonators

    Full text link
    The dream of every surfer is an extremely steep wave propagating at the highest speed possible. The best waves for this would be shock waves, but are very hard to surf. In the nanoscopic world the same is true: the surfers in this case are electrons riding through nanomechanical devices on acoustic waves [1]. Naturally, this has a broad range of applications in sensor technology and for communication electronics for which the combination of an electronic and a mechanical degree of freedom is essential. But this is also of interest for fundamental aspects of nano-electromechanical systems (NEMS), when it comes to quantum limited displacement detection [2] and the control of phonon number states [3]. Here, we study the formation of shock waves in a NEMS resonator with an embedded two-dimensional electron gas using surface acoustic waves. The mechanical displacement of the nano-resonator is read out via the induced acoustoelectric current. Applying acoustical standing waves we are able to determine the anomalous acoustocurrent. This current is only found in the regime of shock wave formation. We ontain very good agreement with model calculations.Comment: 14 Pages including 4 figure
    • …
    corecore