150 research outputs found

    Dot

    Get PDF
    En Kabylie (d'après G. Laoust-Chantreaux) Le calcul qui permet de fixer le montant de la dot, en Kabylie, obéit à un véritable rituel bien décrit par G. Laoust-Chantereaux pour la période qui précéda la deuxième Guerre mondiale. Bien qu’il ait été déjà arrêté entre les deux familles, le montant doit être débattu devant témoins après un repas offert chez le père de la jeune fille mais aux frais des parents du jeune homme. Le déroulement de la cérémonie est invariable : le père de la jeune fill..

    Marine Conservation

    Get PDF
    This book gives an overview of the diverse marine fauna and flora of Japan and includes practical guides for investigating the biology and ecology of marine organisms

    Structure–activity study of N-((trans)-4-(2-(7-cyano-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1H-indole-2-carboxamide (SB269652), a bitopic ligand that acts as a negative allosteric modulator of the dopamine D2 receptor

    Get PDF
    We recently demonstrated that SB269652 (1) engages one protomer of a dopamine D2 receptor (D2R) dimer in a bitopic mode to allosterically inhibit the binding of dopamine at the other protomer. Herein, we investigate structural deter- minants for allostery, focusing on modifications to three moieties within 1. We find that orthosteric “head” groups with small 7-substituents were important to maintain the limited negative cooperativity of analogues of 1, and replacement of the tetrahydroisoquinoline head group with other D2R “privileged structures” generated orthosteric antagonists. Additionally, replacement of the cyclohexylene linker with polymethylene chains conferred linker length dependency in allosteric pharma- cology. We validated the importance of the indolic NH as a hydrogen bond donor moiety for maintaining allostery. Replacement of the indole ring with azaindole conferred a 30-fold increase in affinity while maintaining negative cooperativity. Combined, these results provide novel SAR insight for bitopic ligands that act as negative allosteric modulators of the D2R

    Applications of fluorescence and bioluminescence resonance energy transfer to drug discovery at G protein coupled receptors

    Get PDF
    The role of G protein coupled receptors (GPCRs) in numerous physiological processes that may be disrupted or modified in disease makes them key targets for the development of new therapeutic medicines. A wide variety of resonance energy transfer (RET) techniques such as fluorescence RET and bioluminescence RET have been developed in recent years to detect protein–protein interactions in living cells. Furthermore, these techniques are now being exploited to screen for novel compounds that activate or block GPCRs and to search for new, previously undiscovered signaling pathways activated by well-known pharmacologically classified drugs. The high resolution that can be achieved with these RET methods means that they are well suited to study both intramolecular conformational changes in response to ligand binding at the receptor level and intermolecular interactions involving protein translocation in subcellular compartments resulting from external stimuli. In this review we highlight the latest advances in these technologies to illustrate general principles

    Nouveaux types urbains au Maroc : A propos d'une enquête collective

    No full text
    corecore