37 research outputs found

    Experimental investigation of planar strained methane-air and ethylene-air flames

    Get PDF
    The extinction of planar strained methane-air flames in the stagnation-point flow is studied. A thermal analysis has been conducted in order to build a new copper stagnation plate which can be heated up to 1000K, and allows investigation of downstream heat loss as extinction driving mechanism. Since premixed stagnation flames are mostly sensitive to the composition of the mixture, axial velocity and CH radical profiles are simultaneously measured for different equivalence ratios, using respectively Particle Streak Velocimetry (PSV) and Planar Laser Induced Fluorescence (PLIF). These are compared to simulations using CANTERA stagnation flow code with a multicomponent molecular transport model, with the following chemical kinetics mechanisms: GRI-MECH 3.0, the C3-Davis, San-Diego 200308 and San-Diego 200503 mechanisms. In methane-air flames, simulations accurately predict the velocity and CH profiles from Phi=0.8 to Phi=1.2, but the flame speed turns out to be overpredicted at Phi=0.7 by all mechanisms except the C3-Davis mechanism (see Bergthorson et al. 2005a). The experiment at Phi=1.3 would need to be reconducted. Also, measured relative concentrations of CH are compared to numerical predictions using each of the four mechanisms cited above. Composition variations impact on ethylene-air flames was also investigated due to a peculiar jump in the overprediction of flame velocities from Phi=1.6 to Phi=1.8 (Bergthorson 2005). This peculiar feature was found to be repeatable, but the cause remains unclear. Methane-air laminar flame speeds Su0 were computed using CANTERA freely propagating flame code for the following chemical kinetics mechanisms: GRI-MECH 3.0, the C3-Davis mechanism, the San Diego 200308, 200503, and 200506 mechanisms, for variable pressures (1,2,5,10,20 atm) and equivalence ratios (0.6-1.4). Even for methane, whose chemistry is one of the best understood, the scatter between the different mechanisms is significant. Both composition and pressure were found to affect Su0 substantially, although composition variations seem to excite the differences in the predictions among the different mechanisms the most

    TRENDS AND SIMILARITIES IN C1-C4 PRIMARY ALCOHOL HIGH-TEMPERATURE IGNITION

    Get PDF
    Abstract A review of shock tube ignition of primary alcohols from methanol to n-butanol is presented. Most of these literature data were obtained in studies of individual alcohols. Recent work published by the current authors focused on the comparative study of these alcohols, showing similarity in their ignition behavior. This similarity is also observed when ignition delays obtained by other groups under the same conditions are compared. Further comparison is carried out using ignition correlations obtained in the previous study by the current authors. A similar approach in the study of flame propagation of methanol, ethanol and n-butanol was reported by Veloo et al. [Veloo et al., Combust. Flame, 157 (2010) 1989-2004, concluding that under lean conditions the flames of these alcohols propagate with the same velocity. The same trend was observed under rich conditions, apart from methanol flames which were found to propagate faster. However, the comparable behavior is not fully captured by the various literature mechanisms of these fuels. The observed similarity, which is not obvious from the analysis of individual alcohols, can be employed in the development, validation and optimization of their detailed and reduced chemical kinetic models. Furthermore, this similarity can be useful in the practical design and modification of engine systems for flexible alcohol-based fuels

    Measurement and chemical kinetic model predictions of detonation cell size in methanol–oxygen mixtures

    Get PDF
    In this study, detonation cell sizes of methanol–oxygen mixtures are experimentally measured at different initial pressures and compositions. Good agreement is found between the experiment data and predictions based on the chemical length scales obtained from a detailed chemical kinetic model. To assess the detonation sensitivity in methanol–oxygen mixtures, the results are compared with those of hydrogen–oxygen and methane–oxygen mixtures. Based on the cell size comparison, it is shown that methanol–oxygen is more detonation sensitive than methane–oxygen but less sensitive than hydrogen–oxygen

    Percolating Reaction-Diffusion Waves (PERWAVES) — Sounding Rocket Combustion Experiments

    Get PDF
    Percolating reaction–diffusion waves in disordered random media are encountered in many branches of modern science, ranging from physics and biology to material science and combustion. Most disordered reaction–diffusion systems, however, have complex morphologies and reaction kinetics that complicate the study of the dynamics. Flames in suspensions of heterogeneously reacting metal-fuel particles is a rare example of a reaction–diffusion wave with a simple structure formed by point-like heat sources having well-defined ignition temperature thresholds and combustion times. Particle sedimentation and natural convection can be suppressed in the free-fall conditions of sounding rocket experiments, enabling the properties of percolating flames in suspensions to be observed, studied, and compared with emerging theoretical models. The current paper describes the design of the European Space Agency PERWAVES microgravity combustion apparatus, built by the Airbus Defense and Space team from Bremen in collaboration with the scientific research teams from McGill University and the Technical University of Eindhoven, and discusses the results of two sounding-rocket flight experiments. The apparatus allows multiple flame experiments in quartz glass tubes filled with uniform suspensions of 25-micron iron particles in oxygen/xenon gas mixtures. The experiments performed during the MAXUS-9 (April 2017) and TEXUS-56 (November 2019) sounding rocket flights have confirmed flame propagation in the discrete mode, which is a pre-requisite for percolating-flame behavior, and have allowed observation of the flame structure in the vicinity of the propagation threshold

    Impinging laminar jets at moderate Reynolds numbers and separation distances

    Get PDF
    An experimental and numerical study of impinging, incompressible, axisymmetric, laminar jets is described, where the jet axis of symmetry is aligned normal to the wall. Particle streak velocimetry (PSV) is used to measure axial velocities along the centerline of the flow field. The jet-nozzle pressure drop is measured simultaneously and determines the Bernoulli velocity. The flow field is simulated numerically by an axisymmetric Navier-Stokes spectral-element code, an axisymmetric potential-flow model, and an axisymmetric one-dimensional stream-function approximation. The axisymmetric viscous and potential-flow simulations include the nozzle in the solution domain, allowing nozzle-wall proximity effects to be investigated. Scaling the centerline axial velocity by the Bernoulli velocity collapses the experimental velocity profiles onto a single curve that is independent of the nozzle-to-plate separation distance. Axisymmetric direct numerical simulations yield good agreement with experiment and confirm the velocity profile scaling. Potential-flow simulations reproduce the collapse of the data; however, viscous effects result in disagreement with experiment. Axisymmetric one-dimensional stream-function simulations can predict the flow in the stagnation region if the boundary conditions are correctly specified. The scaled axial velocity profiles are well characterized by an error function with one Reynolds-number-dependent parameter. Rescaling the wall-normal distance by the boundary-layer displacement-thickness-corrected diameter yields a collapse of the data onto a single curve that is independent of the Reynolds number. These scalings allow the specification of an analytical expression for the velocity profile of an impinging laminar jet over the Reynolds number range investigated of 200 ≤ Re ≤ 1400.Jeffrey M. Bergthorson, Kazuo Sone, Trent W. Mattner, Paul E. Dimotakis, David G. Goodwin, and Dan I. Meiro

    Particle velocimetry in high-gradient/high-curvature flows

    No full text
    Particle-velocimetry techniques typically rely on the assumption that particle velocities match fluid velocities. However, this assumption may be invalid if external forces or inertia cause the particle motion to differ from that of the flow. In this paper, particle motion through premixed stagnation flames is modeled, including Stokes-drag and thermophoretic forces. The finite time interval employed in particle-tracking techniques can act as a low-pass filter in flow regions with large curvature in the velocity field. To account for this effect, the modeled-particle-tracking profile for a specified time interval is estimated from the predicted particle position in time and compared to measurements. The implementation presented here is applicable to other simulated flow fields and allows direct comparisons with particle-velocimetry measurements. Expressions are also derived that allow particle-tracking data to be corrected for these effects
    corecore