8 research outputs found

    ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННЫХ КРАХМАЛОВ ХОЛОДНОГО НАБУХАНИЯ С РЕГУЛИРУЕМЫМИ СВОЙСТВАМИ ДЛЯ ХОЗЯЙСТВЕННОГО КОМПЛЕКСА

    Get PDF
    Developed is the technology of producing modified starch of cold swelling with controlled properties allowing to obtain swelling starch with desired properties (solubility, swelling properties, viscosity) through controlling the degree of polymers destruction what makes it possible to expand the spheres and methods of starch use.Разработана технология получения модифицированных крахмалов холодного набухания с регулируемыми свойствами, позволяющая получать, путем управления степенью деструкции крахмальных полимеров, набухающие крахмалы с заранее заданными свойствами (растворимостью, набухаемостью, вязкостью), что дает возможность расширить сферы и способы их применения

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Wpływ wybranych czynników na formowanie elektroprzędzionych nanowłókien z mieszaniny PVA/skrobia

    No full text
    This paper describes the formation of bicomponent nanofibres from poly(vinyl alcohol) (PVA) and modified cationic starch (CS) mixed solutions (PVA/CS mass ratio 3/1) with different total concentrations of solids in water (8, 10 and 12 wt.%) via the electrospinning technique using two types of rotating electrodes (a plain cylindrical electrode and an electrode with tines). The best results were obtained using a PVA/CS solution with a solid concentration of 8 wt.%. The viscosity of 12 wt.% spinning solution was significantly higher compared to that with a concentration of 8 wt.%. These differences in viscosity had a significant influence on the process of electrospinning, as thinner nanofibres were produced from the less viscous solution. In comparison with the cylindrical electrode, the electrode with tines showed a better performance, where the diameter distribution of nanofibres and the electrospinning process were improved. The purpose of the second part of the experiment was to investigate the influence of different amounts of ethanol in the 8 wt.% PVA/CS solution on the electrospinning process and the properties of nanofibres. The results showed that 3 wt.% of ethanol in the spinning solution influenced the diameter of nanofibres in comparison with 9 wt.% of ethanol (the diameter of nanofibres significantly increased in this case).Artykuł przedstawia formowanie włókien przy zastosowaniu dwóch rodzajów elektrod - cylindrycznej i żłobkowanej. Najlepsze wyniki uzyskano przy przędzeniu włókien z roztworu 8 wt.%. Różnice w lepkości spowodowane stężeniem odgrywają znaczną rolę przy produkcji nanowłókien, przy czym cieńsze naowłókna otrzymywane są z roztworów o mniejszej lepkości. Stwierdzono, że proces przebiega lepiej i uzyskuje się korzystniejszy rozkład średnic przy zastosowaniu elektrody żłobkowanej. Druga część badań polegała na ocenie wpływu zawartości etanolu na przebieg procesu i właściwości uzyskiwanych włókien. Stwierdzono znaczny wzrost średnicy nanowłókien przy stosowaniu 9 wt% zawartości etanolu w roztworze przędzalniczym w stosunku do roztworu 3 wt.%

    Modified Starches Used as Additives in Enhanced Oil Recovery (EOR)

    No full text
    Enhanced oil recovery (EOR) implementation arises as a supplementary technology to conventional ones, optimizing the not-easily recoverable oil phase. Estimation of oil remnant in reservoirs approaches to seven billion of barrels, after primary and secondary recoveries. One of the EOR strategies implies the use of displacing fluids, such as water-soluble polymers, which are pumped into the reservoir forcing the oil to flow toward the production wells. Thus, the state of the art related to the use of different starch derivatives in EOR is included in this chapter. Besides, diverse synthesis methodologies of the modified starches are presented, analyzing the optimal conditions of each reaction. Particularly, the synthesis of cationic starches is reported since they are the most used in EOR. Modification degree and physicochemical properties of the derivatives are included. Rheological and flow properties of displacing fluids are also discussed as a function of starch concentration.Fil: Lopez, Olivia Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Castillo, Luciana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; ArgentinaFil: Ninago, Mario Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; ArgentinaFil: Ciolino, Andrés Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; ArgentinaFil: Villar, Marcelo Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentin
    corecore