1,167 research outputs found

    Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth

    Full text link
    In the present contribution we review basic mathematical results for three physical systems involving self-organising solid or liquid films at solid surfaces. The films may undergo a structuring process by dewetting, evaporation/condensation or epitaxial growth, respectively. We highlight similarities and differences of the three systems based on the observation that in certain limits all of them may be described using models of similar form, i.e., time evolution equations for the film thickness profile. Those equations represent gradient dynamics characterized by mobility functions and an underlying energy functional. Two basic steps of mathematical analysis are used to compare the different system. First, we discuss the linear stability of homogeneous steady states, i.e., flat films; and second the systematics of non-trivial steady states, i.e., drop/hole states for dewetting films and quantum dot states in epitaxial growth, respectively. Our aim is to illustrate that the underlying solution structure might be very complex as in the case of epitaxial growth but can be better understood when comparing to the much simpler results for the dewetting liquid film. We furthermore show that the numerical continuation techniques employed can shed some light on this structure in a more convenient way than time-stepping methods. Finally we discuss that the usage of the employed general formulation does not only relate seemingly not related physical systems mathematically, but does as well allow to discuss model extensions in a more unified way

    Expected Sensitivity to Galactic/Solar Axions and Bosonic Super-WIMPs based on the Axio-electric Effect in Liquid Xenon Dark Matter Detectors

    Full text link
    We present systematic case studies to investigate the sensitivity of axion searches by liquid xenon detectors, using the axio-electric effect (analogue of the photoelectric effect) on xenon atoms. Liquid xenon is widely considered to be one of the best target media for detection of WIMPs (Weakly Interacting Massive Particles which may form the galactic dark matter) using nuclear recoils. Since these detectors also provide an extremely low radioactivity environment for electron recoils, very weakly-interacting low-mass particles (< 100 keV/c^2), such as the hypothetical axion, could be detected as well - in this case using the axio-electric effect. Future ton-scale liquid Xe detectors will be limited in sensitivity only by irreducible neutrino background (pp-chain solar neutrino and the double beta decay of 136Xe) in the mass range between 1 and 100 keV/c^2. Assuming one ton-year of exposure, galactic axions (as non-relativistic dark matter) could be detected if the axio-electric coupling g_Ae is greater than 10^-14 at 1 keV/c^2 (or $10^-13 at 100 keV/c^2). Below a few keV/c^2, and independent of the mass, a solar axion search would be sensitive to a coupling g_Ae ~ 10^-12. This limit will set a stringent upper bound on axion mass for the DFSV and KSVZ models for the mass ranges m_A < 0.1 eV/c^2 and < 10 eV/c^2, respectively. Vector-boson dark matter could also be detected for a coupling constant alpha'/alpha > 10^-33 (for mass 1 keV/c^2) or > 10^-27 (for mass 100 keV/c^2).Comment: 17 pages, 10 figure

    Depinning of three-dimensional drops from wettability defects

    Full text link
    Substrate defects crucially influence the onset of sliding drop motion under lateral driving. A finite force is necessary to overcome the pinning influence even of microscale heterogeneities. The depinning dynamics of three-dimensional drops is studied for hydrophilic and hydrophobic wettability defects using a long-wave evolution equation for the film thickness profile. It is found that the nature of the depinning transition explains the experimentally observed stick-slip motion.Comment: 6 pages, 9 figures, submitted to ep

    Rayleigh and depinning instabilities of forced liquid ridges on heterogeneous substrates

    Full text link
    Depinning of two-dimensional liquid ridges and three-dimensional drops on an inclined substrate is studied within the lubrication approximation. The structures are pinned to wetting heterogeneities arising from variations of the strength of the short-range polar contribution to the disjoining pressure. The case of a periodic array of hydrophobic stripes transverse to the slope is studied in detail using a combination of direct numerical simulation and branch-following techniques. Under appropriate conditions the ridges may either depin and slide downslope as the slope is increased, or first breakup into drops via a transverse instability, prior to depinning. The different transition scenarios are examined together with the stability properties of the different possible states of the system.Comment: Physics synopsis link: http://physics.aps.org/synopsis-for/10.1103/PhysRevE.83.01630

    Development and Evaluation of qPCR Detection Method and Zn-MgO/Alginate Active Packaging for Controlling Listeria monocytogenes Contamination in Cold-Smoked Salmon

    Get PDF
    To answer to food industry requests to monitor the presence of L. monocytogenes in cold-smoked salmon samples and to extend their shelf-life, a qPCR protocol for the detection of L. monocytogenes, and an antibacterial active packaging reinforced with zinc magnesium oxide nanoparticles (Zn-MgO NPs) were developed. The qPCR allowed the sensitive and easy detection of L. monocytogenes in naturally contaminated samples, with specificity in full agreement with the standard methods. The halo diusion study indicated a high antibacterial eciency of 1 mg/mL Zn-MgO NPs against L. monocytogenes, while the flow cytometry showed only moderate cytotoxicity of the nanoparticles towards mammalian cells at a concentration above 1 mg/mL. Thus, the novel active packaging was developed by using 1 mg/mL of Zn-MgO NPs to reinforce the alginate film. Cold-smoked salmon samples inoculated with L. monocytogenes and air-packed with the Zn-MgO NPs-alginate nanobiocomposite film showed no bacterial proliferation at 4 C during 4 days. In the same condition, L. monocytogenes growth in control contaminated samples packed with alginate film alone. Our results suggest that Zn-MgO nanoparticles can extend the shelf-life of cold-smoked salmon samples

    Characterization of the Hamamatsu R11410-10 3-Inch Photomultiplier Tube for Liquid Xenon Dark Matter Direct Detection Experiments

    Get PDF
    To satisfy the requirements of the next generation of dark matter detectors based on the dual phase TPC, Hamamatsu, in close collaboration with UCLA, has developed the R11410-10 photomultipler tube. In this work, we present the detailed tests performed on this device. High QE (>30%) accompanied by a low dark count rate (50 Hz at 0.3 PE) and high gain (10^7) with good single PE resolution have been observed. A comprehensive screening measurement campaign is ongoing while the manufacturer quotes a radioactivity of 20 mBq/PMT. These characteristics show the R11410-10 to be particularly suitable for the forthcoming zero background liquid xenon detectors.Comment: 19 pages, 18 figure

    Photometry of GSC 762-110, a new triple-mode radially pulsating star

    Full text link
    Stars pulsating in three radial modes are very rare; only three examples are known in the Galaxy. These stars are very useful since their periods may be measured very precisely, and this will constrain the global stellar parameters and the models of the star's interior. The purpose of this paper is to present a new example of the class of triple-mode radial pulsators. A search for candidate multi-mode pulsators was carried out in public survey data. Time-series photometry of one of the candidates, GSC 762-110, was performed. GSC 762-110 was found to be a triple-mode radial pulsator, with a fundamental period of 0.1945d and period ratios of 0.7641 and 0.8012. In addition two non-radial modes were found, for which the amplitude has diminished considerably over the last few years.Comment: Accepted for publication in Astronomy & Astrophysic

    Unsupervised activity recognition for autonomous water drones

    Get PDF
    We propose an automatic system aimed at discovering relevant activities for aquatic drones employed in water monitoring applications. The methodology exploits unsupervised time series segmentation to pursue two main goals: i) to support on-line decision making of drones and operators, ii) to support off-line analysis of large datasets collected by drones. The main novelty of our approach consists of its unsupervised nature, which enables to analyze unlabeled data. We investigate different variants of the proposed approach and validate them using an annotated dataset having labels for activity \u201cupstream/downstream navigation\u201d. Obtained results are encouraging in terms of clustering purity and silhouette which reach values greater than 0.94 and 0.20, respectively, in the best models

    Robust area coverage with connectivity maintenance

    Get PDF
    Robot swarms herald the ability to solve complex tasks using a large collection of simple devices. However, engineering a robotic swarm is far from trivial, with a major hurdle being the definition of the control laws leading to the desired globally coordinated behavior. Communication is a key element for coordination and it is considered one of the current most important challenges for swarm robotics. In this paper, we study the problem of maintaining robust swarm connectivity while performing a coverage task based on the Voronoi tessellation of an area of interest. We implement our methodology in a team of eight Khepera IV robots. With the assumptions that robots have a limited sensing and communication range - and cannot rely on centralized processing - we propose a tri-objective control law that outperforms other simpler strategies (e.g. a potential-based coverage) in terms of network connectivity, robustness to failure, and area coverage

    Rupturing fungal cell walls for higher yield of polysaccharides: Acid treatment of the basidiomycete prior to extraction

    Get PDF
    The fungal cell wall of Agaricus bisporus powder was degraded by ethanol-acid treatment in order to improve the yield of the hot water extractions. Polysaccharides from multiple hot water extractions of treated and untreated mushroom were precipitated with ethanol and characterised separately. The treatment and the sequenced extractions changed the anomeric compositions, the molecular weights, and the sugar contents of the extracted polysaccharides. The total yield of the first extraction of treated A. bisporus increased by 46% with over 10 percentage points higher glucan content compared to untreated batch. Bioactivities were decreasing within the extraction batches and after the treatment. This was found to be connected to the amount of polysaccharides and the content of mannitol in the precipitates
    • …
    corecore