1,054 research outputs found
On the relative strengths of fragments of collection
Let be the basic set theory that consists of the axioms of
extensionality, emptyset, pair, union, powerset, infinity, transitive
containment, -separation and set foundation. This paper studies the
relative strength of set theories obtained by adding fragments of the
set-theoretic collection scheme to . We focus on two common
parameterisations of collection: -collection, which is the usual
collection scheme restricted to -formulae, and strong
-collection, which is equivalent to -collection plus
-separation. The main result of this paper shows that for all ,
(1) proves the consistency of Zermelo Set Theory plus
-collection,
(2) the theory is
-conservative over the theory .
It is also shown that (2) holds for when the Axiom of Choice is
included in the base theory. The final section indicates how the proofs of (1)
and (2) can be modified to obtain analogues of these results for theories
obtained by adding fragments of collection to a base theory (Kripke-Platek Set
Theory with Infinity and ) that does not include the powerset axiom.Comment: 22 page
Dependence Logic with Generalized Quantifiers: Axiomatizations
We prove two completeness results, one for the extension of dependence logic
by a monotone generalized quantifier Q with weak interpretation, weak in the
meaning that the interpretation of Q varies with the structures. The second
result considers the extension of dependence logic where Q is interpreted as
"there exists uncountable many." Both of the axiomatizations are shown to be
sound and complete for FO(Q) consequences.Comment: 17 page
Formalizing Mathematical Knowledge as a Biform Theory Graph: A Case Study
A biform theory is a combination of an axiomatic theory and an algorithmic
theory that supports the integration of reasoning and computation. These are
ideal for formalizing algorithms that manipulate mathematical expressions. A
theory graph is a network of theories connected by meaning-preserving theory
morphisms that map the formulas of one theory to the formulas of another
theory. Theory graphs are in turn well suited for formalizing mathematical
knowledge at the most convenient level of abstraction using the most convenient
vocabulary. We are interested in the problem of whether a body of mathematical
knowledge can be effectively formalized as a theory graph of biform theories.
As a test case, we look at the graph of theories encoding natural number
arithmetic. We used two different formalisms to do this, which we describe and
compare. The first is realized in , a version of Church's
type theory with quotation and evaluation, and the second is realized in Agda,
a dependently typed programming language.Comment: 43 pages; published without appendices in: H. Geuvers et al., eds,
Intelligent Computer Mathematics (CICM 2017), Lecture Notes in Computer
Science, Vol. 10383, pp. 9-24, Springer, 201
Rich Situated Attitudes
We outline a novel theory of natural language meaning, Rich
Situated Semantics [RSS], on which the content of sentential utterances
is semantically rich and informationally situated. In virtue of its situatedness,
an utterance’s rich situated content varies with the informational
situation of the cognitive agent interpreting the utterance. In virtue of its
richness, this content contains information beyond the utterance’s lexically
encoded information. The agent-dependence of rich situated content
solves a number of problems in semantics and the philosophy of language
(cf. [14, 20, 25]). In particular, since RSS varies the granularity of utterance
contents with the interpreting agent’s informational situation, it
solves the problem of finding suitably fine- or coarse-grained objects for
the content of propositional attitudes. In virtue of this variation, a layman
will reason with more propositions than an expert
Capturing Hiproofs in HOL Light
Hierarchical proof trees (hiproofs for short) add structure to ordinary proof
trees, by allowing portions of trees to be hierarchically nested. The
additional structure can be used to abstract away from details, or to label
particular portions to explain their purpose. In this paper we present two
complementary methods for capturing hiproofs in HOL Light, along with a tool to
produce web-based visualisations. The first method uses tactic recording, by
modifying tactics to record their arguments and construct a hierarchical tree;
this allows a tactic proof script to be modified. The second method uses proof
recording, which extends the HOL Light kernel to record hierachical proof trees
alongside theorems. This method is less invasive, but requires care to manage
the size of the recorded objects. We have implemented both methods, resulting
in two systems: Tactician and HipCam
Logics of Finite Hankel Rank
We discuss the Feferman-Vaught Theorem in the setting of abstract model
theory for finite structures. We look at sum-like and product-like binary
operations on finite structures and their Hankel matrices. We show the
connection between Hankel matrices and the Feferman-Vaught Theorem. The largest
logic known to satisfy a Feferman-Vaught Theorem for product-like operations is
CFOL, first order logic with modular counting quantifiers. For sum-like
operations it is CMSOL, the corresponding monadic second order logic. We
discuss whether there are maximal logics satisfying Feferman-Vaught Theorems
for finite structures.Comment: Appeared in YuriFest 2015, held in honor of Yuri Gurevich's 75th
birthday. The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-23534-9_1
Information completeness in Nelson algebras of rough sets induced by quasiorders
In this paper, we give an algebraic completeness theorem for constructive
logic with strong negation in terms of finite rough set-based Nelson algebras
determined by quasiorders. We show how for a quasiorder , its rough
set-based Nelson algebra can be obtained by applying the well-known
construction by Sendlewski. We prove that if the set of all -closed
elements, which may be viewed as the set of completely defined objects, is
cofinal, then the rough set-based Nelson algebra determined by a quasiorder
forms an effective lattice, that is, an algebraic model of the logic ,
which is characterised by a modal operator grasping the notion of "to be
classically valid". We present a necessary and sufficient condition under which
a Nelson algebra is isomorphic to a rough set-based effective lattice
determined by a quasiorder.Comment: 15 page
- …
