4,948 research outputs found
Binding energy and stability of spherically symmetric masses in general relativity
Binding energy and stability of spherically symmetric masses in general relativit
Higgs Mass in the Standard Model from Coupling Constant Reduction
Plausible interrelations between parameters of the standard model are
studied. The empirical value of the top quark mass, when used in the
renormalization group equations, suggests that the ratio of the colour SU(3)
gauge coupling , and the top coupling is independent of the
renormalization scale. On the other hand, variety of top-condensate models
suggest that the Higgs self-coupling is proportional to .
Invoking the requirement that the ratio is independent of
the renormalization scale , fixes the Higgs mass. The pole mass of the Higgs
[which differs from the renormalization group mass by a few percent] is found
to be GeV for the one-loop equations and GeV for the
two-loop equations.Comment: 17 pages RevTeX including 7 figure
Chiral Lagrangian Parameters for Scalar and Pseudoscalar Mesons
The results of a high-statistics study of scalar and pseudoscalar meson
propagators in quenched lattice QCD are presented. For two values of lattice
spacing, ( fm) and 5.9 ( fm), we
probe the light quark mass region using clover improved Wilson fermions with
the MQA pole-shifting ansatz to treat the exceptional configuration problem.
The quenched chiral loop parameters and are determined
from a study of the pseudoscalar hairpin correlator. From a global fit to the
meson correlators, estimates are obtained for the relevant chiral Lagrangian
parameters, including the Leutwyler parameters and . Using the
parameters obtained from the singlet and nonsinglet pseudoscalar correlators,
the quenched chiral loop effect in the nonsinglet scalar meson correlator is
studied. By removing this QCL effect from the lattice correlator, we obtain the
mass and decay constant of the ground state scalar, isovector meson .Comment: 36 pages, 12 figures, LaTe
Explanation of the Tao effect
In a series of experiments Tao and coworkers\cite{tao1,tao2,tao3} found that
superconducting microparticles in the presence of a strong electrostatic field
aggregate into balls of macroscopic dimensions. No explanation of this
phenomenon exists within the conventional theory of superconductivity. We show
that this effect can be understood within an alternative electrodynamic
description of superconductors recently proposed that follows from an
unconventional theory of superconductivity. Experiments to test the theory are
discussed.Comment: Submitted to Science January 2nd, declined January 6th; to Nature
January 7th, declined January 13th; to PRL January 14th, declined February
25t
Cosmology and the S-matrix
We study conditions for the existence of asymptotic observables in cosmology.
With the exception of de Sitter space, the thermal properties of accelerating
universes permit arbitrarily long observations, and guarantee the production of
accessible states of arbitrarily large entropy. This suggests that some
asymptotic observables may exist, despite the presence of an event horizon.
Comparison with decelerating universes shows surprising similarities: Neither
type suffers from the limitations encountered in de Sitter space, such as
thermalization and boundedness of entropy. However, we argue that no realistic
cosmology permits the global observations associated with an S-matrix.Comment: 16 pages, 5 figures; v2: minor editin
General relativistic gravitational field of a rigidly rotating disk of dust: Solution in terms of ultraelliptic functions
In a recent paper we presented analytic expressions for the axis potential,
the disk metric, and the surface mass density of the global solution to
Einstein's field equations describing a rigidly rotating disk of dust. Here we
add the complete solution in terms of ultraelliptic functions and quadratures.Comment: 5 pages, published in 1995 [Phys. Rev. Lett. 75 (1995) 3046
Quenched divergences in the deconfined phase of SU(2) gauge theory
The spectrum of the overlap Dirac operator in the deconfined phase of
quenched gauge theory is known to have three parts: exact zeros arising from
topology, small nonzero eigenvalues that result in a non-zero chiral
condensate, and the dense bulk of the spectrum, which is separated from the
small eigenvalues by a gap. In this paper, we focus on the small nonzero
eigenvalues in an SU(2) gauge field background at and . This
low-lying spectrum is computed on four different spatial lattices (,
, , and ). As the volume increases, the small eigenvalues
become increasingly concentrated near zero in such a way as to strongly suggest
that the infinite volume condensate diverges.Comment: 12 pages, 3 figures, version to appear in Physical Review
- …