30 research outputs found

    Tension-Compression Loading with Chemical Stimulation Results in Additive Increases to Functional Properties of Anatomic Meniscal Constructs

    Get PDF
    Objective: This study aimed to improve the functional properties of anatomically-shaped meniscus constructs through simultaneous tension and compression mechanical stimulation in conjunction with chemical stimulation. Methods: Scaffoldless meniscal constructs were subjected to simultaneous tension and compressive stimulation and chemical stimulation. The temporal aspect of mechanical loadingwas studied by employing two separate five day stimulation periods. Chemical stimulation consisted of the application of a catabolic GAG-depleting enzyme, chondroitinase ABC (C-ABC), and an anabolic growth factor, TGF-b1. Mechanical and chemical stimulation combinations were studied through a full-factorial experimental design and assessed for histological, biochemical, and biomechanical properties following 4 wks of culture. Results: Mechanical loading applied from days 10–14 resulted in significant increases in compressive, tensile, and biochemical properties of meniscal constructs. When mechanical and chemical stimuliwere combined significant additive increases in collagen per wet weight (4-fold), compressive instantaneous (3-fold) and relaxation (2-fold) moduli, and tensile moduli in the circumferential (4-fold) and radial (6-fold) directions were obtained. Conclusions: This study demonstrates that a stimulation regimen of simultaneous tension and compression mechanical stimulation, C-ABC, and TGF-b1 is able to create anatomic meniscus constructs replicating the compressive mechanica

    Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine

    No full text
    Lower back and neck pain are leading physical conditions for which patients see their doctors in the United States. The organ commonly implicated in this condition is the intervertebral disc (IVD), which frequently herniates, ruptures, or tears, often causing pain and limiting spinal mobility. To date, approaches for replacement of diseased IVD have been confined to purely mechanical devices designed to either eliminate or enable flexibility of the diseased motion segment. Here we present the evaluation of a living, tissue-engineered IVD composed of a gelatinous nucleus pulposus surrounded by an aligned collagenous annulus fibrosus in the caudal spine of athymic rats for up to 6 mo. When implanted into the rat caudal spine, tissue-engineered IVD maintained disc space height, produced de novo extracellular matrix, and integrated into the spine, yielding an intact motion segment with dynamic mechanical properties similar to that of native IVD. These studies demonstrate the feasibility of engineering a functional spinal motion segment and represent a critical step in developing biological therapies for degenerative disc disease

    An Optical Method for Evaluation of Geometric Fidelity for Anatomically Shaped Tissue-Engineered Constructs

    No full text
    Quantification of shape fidelity of complex geometries for tissue-engineered constructs has not been thoroughly investigated. The objective of this study was to quantitatively describe geometric fidelities of various approaches to the fabrication of anatomically shaped meniscal constructs. Ovine menisci (n = 4) were imaged using magnetic resonance imaging (MRI) and microcomputed tomography (μCT). Acrylonitrile butadiene styrene plastic molds were designed from each imaging modality and three-dimensional printed on a Stratasys FDM 3000. Silastic impression molds were fabricated directly from ovine menisci. These molds were used to generate shaped constructs using 2% alginate with 2% CaSO4. Solid freeform fabrication was conducted on a custom open-architecture three-dimensional printing platform. Printed samples were made using 2% alginate with 0.75% CaSO4. Hydrogel constructs were scanned via laser triangulation distance sensor. The point cloud images were analyzed to acquire computational measurements for key points of interest (e.g., height, width, and volume). Silastic molds were within ±10% error with respect to the native tissue for seven key measurements, μCT molds for six of seven, μCT prints for four of seven, MRI molds for five of seven, and MRI prints for four of seven. This work shows the ability to generate and quantify anatomically shaped meniscal constructs of high geometric fidelity and lends insight into the relative geometric fidelities of several tissue engineering techniques
    corecore