76 research outputs found

    Digital soil mapping from conventional field soil observations

    Get PDF
    We tested the performance of a formalized digital soil mapping (DSM) approach comprising fuzzy k-means (FKM) classification and regression-kriging to produce soil type maps from a fine-scale soil observation network in Risnovce, Slovakia. We examine whether the soil profile descriptions collected merely by field methods fit into the statistical DSM tools and if they provide pedologically meaningful results for an erosion-affected area. Soil texture, colour, carbonates, stoniness and genetic qualifiers were estimated for a total of 111 soil profiles using conventional field methods. The data were digitized along semi-quantitative scales in 10-cm depth intervals to express the relative differences, and afterwards classified by the FKM method into four classes A-D: (i) Luvic Phaeozems (Anthric), (ii) Haplic Phaeozems (Anthric, Calcaric, Pachic), (iii) Calcic Cutanic Luvisols, and (iv) Haplic Regosols (Calcaric). To parameterize regression-kriging, membership values (MVs) to the above A-D class centroids were regressed against PCA-transformed terrain variables using the multiple linear regression method (MLR). MLR yielded significant relationships with R2 ranging from 23% to 47% (P < 0.001) for classes A, B and D, but only marginally significant for Luvisols of class C (R2 = 14%, P < 0.05). Given the results, Luvisols were then mapped by ordinary kriging and the rest by regression-kriging. A 'leave-one-out' cross-validation was calculated for the output maps yielding R2 of 33%, 56%, 22% and 42% for Luvic Phaeozems, Haplic Phaeozems, Luvisols and also Regosols, respectively (all P < 0.001). Additionally, the pixel-mixture visualization technique was used to draw a synthetic digital soil map. We conclude that the DSM model represents a fully formalized alternative to classical soil mapping at very fine scales, even when soil profile descriptions were collected merely by field estimation methods. Additionally to conventional soil maps it allows to address the diffuse character in soil cover, both in taxonomic and geographical interpretations

    The impact of water erosion on global maize and wheat productivity

    Get PDF
    Water erosion removes soil nutrients, soil carbon, and in extreme cases can remove topsoil altogether. Previous studies have quantified crop yield losses from water erosion using a range of methods, applied mostly to single plots or fields, and cannot be systematically compared. This study assesses the worldwide impact of water erosion on maize and wheat production using a global gridded modeling approach for the first time. The EPIC crop model is used to simulate the global impact of water erosion on maize and wheat yields, from 1980 to 2010, for a range of field management strategies. Maize and wheat yields were reduced by a median of 3% annually in grid cells affected by water erosion, which represent approximately half of global maize and wheat cultivation areas. Water erosion reduces the annual global production of maize and wheat by 8.9 million tonnes and 5.6 million tonnes, with a value of 3.3bnglobally.Nitrogenfertilizernecessarytoreducelossesisvaluedat3.3bn globally. Nitrogen fertilizer necessary to reduce losses is valued at 0.9bn. As cropland most affected by water erosion is outside major maize and wheat production regions, the production losses account for less than 1% of the annual global production by volume. Countries with heavy rainfall, hilly agricultural regions and low fertilizer use are most vulnerable to water erosion. These characteristics are most common in South and Southeast Asia, sub-Saharan Africa and South and Central America. Notable uncertainties remain around large-scale water erosion estimates that will need to be addressed by better integration of models and observations. Yet, an integrated bio-physical modeling framework ā€“ considering plant growth, soil processes and input requirements ā€“ as presented herein can provide a link between robust water erosion estimates, economics and policy-making so far lacking in global agricultural assessments

    Uncertainties, sensitivities and robustness of simulated water erosion in an EPIC-based global gridded crop model

    Get PDF
    Water erosion on arable land can reduce soil fertility and agricultural productivity. Despite the impact of water erosion on crops, it is typically neglected in global crop yield projections. Furthermore, previous efforts to quantify global water erosion have paid little attention to the effects of field management on the magnitude of water erosion. In this study, we analyse the robustness of simulated water erosion estimates in maize and wheat fields between the years 1980 and 2010 based on daily model outputs from a global gridded version of the Environmental Policy Integrated Climate (EPIC) crop model. By using the MUSS water erosion equation and country-specific and environmental indicators determining different intensities in tillage, residue handling and cover crops, we obtained the global median water erosion rates of 7ā€‰tā€‰haāˆ’1ā€‰aāˆ’1 in maize fields and 5ā€‰tā€‰haāˆ’1ā€‰aāˆ’1 in wheat fields. A comparison of our simulation results with field data demonstrates an overlap of simulated and measured water erosion values for the majority of global cropland. Slope inclination and daily precipitation are key factors in determining the agreement between simulated and measured erosion values and are the most critical input parameters controlling all water erosion equations included in EPIC. The many differences between field management methods worldwide, the varying water erosion estimates from different equations and the complex distribution of cropland in mountainous regions add uncertainty to the simulation results. To reduce the uncertainties in global water erosion estimates, it is necessary to gather more data on global farming techniques to reduce the uncertainty in global land-use maps and to collect more data on soil erosion rates representing the diversity of environmental conditions where crops are grown

    Spatial Analysis of Weather-induced Annual and Decadal Average Yield Variability as Modeled by EPIC for Rain-fed Wheat in Europe

    Get PDF
    In our analysis we evaluate the accuracy of near-term(decadal) average crop yield assessments as supported by the biophysical crop growth model EPIC. A spatial assessment of averages and variability has clear practical implications for agricultural producers and investors concerned with an estimation of the basic stochastic characteristics of a crop yield distribution. As a reliable weather projection for a time period of several years will apparently remain a challenge in the near future, we have employed the existing gridded datasets on historical weather as a best proxy for the current climate. Based on different weather inputs to EPIC, we analyzed the model runs for the rain-fed wheat for 1968-2007 employing AgGRID/GGCMI simulations using harmonized inputs and assumptions (weather datasets: GRASP and Princeton). We have explored the variability of historical ten-year yield averages in the past forty years as modeled by the EPIC model, and found that generally the ten-year average yield variability is less than 20% ((max-min)/average), whereas there are mid/low yielding areas with a higher ten-years average variability of 20-50%. The location of these spots of high variability differs between distinctive model-weather setups. Assuming that historical weather can be used as a proxy of the weather in the next ten years, a best possible EPIC-based assessment of a ten-year average yield is a range of 20% width ((max-min)/average). For some mid/low productive areas the range is up to 50% wide

    Uncertainties, sensitivities and robustness of simulated water erosion in an EPIC-based global gridded crop model

    Get PDF
    Water erosion on arable land can reduce soil fertility and agricultural productivity. Despite the impact of water erosion on crops, it is typically neglected in global crop yield projections. Furthermore, previous efforts to quantify global water erosion have paid little attention to the effects of field management on the magnitude of water erosion. In this study, we analyse the robustness of simulated water erosion estimates in maize and wheat fields between the years 1980 and 2010 based on daily model outputs from a global gridded version of the Environmental Policy Integrated Climate (EPIC) crop model. By using the MUSS water erosion equation and country-specific and environmental indicators determining different intensities in tillage, residue handling and cover crops, we obtained the global median water erosion rates of 7 t ha-1 a-1 in maize fields and 5 t ha-1 a-1 in wheat fields. A comparison of our simulation results with field data demonstrates an overlap of simulated and measured water erosion values for the majority of global cropland. Slope inclination and daily precipitation are key factors in determining the agreement between simulated and measured erosion values and are the most critical input parameters controlling all water erosion equations included in EPIC. The many differences between field management methods worldwide, the varying water erosion estimates from different equations and the complex distribution of cropland in mountainous regions add uncertainty to the simulation results. To reduce the uncertainties in global water erosion estimates, it is necessary to gather more data on global farming techniques to reduce the uncertainty in global land-use maps and to collect more data on soil erosion rates representing the diversity of environmental conditions where crops are grown

    Affordable nutrient solutions for improved food security as evidenced by crop trials

    Get PDF
    The continuing depletion of nutrients from agricultural soils in Sub-Saharan African is accompanied by a lack of substantial progress in crop yield improvement. In this paper we investigate yield gaps for corn under two scenarios: a micro-dosing scenario with marginal increases in nitrogen (N) and phosphorus (P) of 10 kg ha/1 and a larger yet still conservative scenario with proposed N and P applications of 80 and 20 kg/ha respectively. The yield gaps are calculated from a database of historical FAO crop fertilizer trials at 1358 locations for Sub-Saharan Africa and South America. Our approach allows connecting experimental field scale data with continental policy recommendations. Two critical findings emerged from the analysis. The first is the degree to which P limits increases in corn yields. For example, under a micro-dosing scenario, in Africa, the addition of small amounts of N alone resulted in mean yield increases of 8% while the addition of only P increased mean yields by 26%, with implications for designing better balanced fertilizer distribution schemes. The second finding was the relatively large amount of yield increase possible for a small, yet affordable amount of fertilizer application. Using African and South American fertilizer prices we show that the level of investment needed to achieve these results is considerably less than 1% of Agricultural GDP for both a micro-dosing scenario and for the scenario involving higher yet still conservative fertilizer application rates. In the latter scenario realistic mean yield increases ranged between 28 to 85% in South America and 71 to 190% in Africa (mean plus one standard deviation). External investment in this low technology solution has the potential to kick start development and could complement other interventions such as better crop varieties and improved economic instruments to support farmers

    Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation

    Get PDF
    Justifiable usage of large-scale crop model simulations requires transparent, comprehensive and spatially extensive evaluations of their performance and associated accuracy. Simulated crop yields of a Pan-European implementation of the Environmental Policy Integrated Climate (EPIC) crop model were satisfactorily evaluated with reported regional yield data from EUROSTAT for four major crops, including winter wheat, rainfed and irrigated maize, spring barley and winter rye. European-wide land use, elevation, soil and daily meteorological gridded data were integrated in GIS and coupled with EPIC. Default EPIC crop and biophysical process parameter values were used with some minor adjustments according to suggestion from scientific literature. The model performance was improved by spatial calculations of crop sowing densities, potential heat units, operation schedules, and nutrient application rates. EPIC performed reasonable in the simulation of regional crop yields, with long-term averages predicted better than inter-annual variability: linear regression R2 ranged from 0.58 (maize) to 0.91 (spring barley) and relative estimation errors were between +-30% for most of the European regions. The modelled and reported crop yields demonstrated similar responses to driving meteorological variables. However, EPIC performed better in dry compared to wet years. A yield sensitivity analysis of crop nutrient and irrigation management factors and cultivar specific characteristics for contrasting regions in Europe revealed a range in model response and attainable yields. We also show that modelled crop yield is strongly dependent on the chosen PET method. The simulated crop yield variability was lower compared to reported crop yields. This assessment should contribute to the availability of harmonised and transparently evaluated agricultural modelling tools in the EU as well as the establishment of modelling benchmark as a requirement for sound and ongoing policy evaluations in the agricultural and environmental domains
    • ā€¦
    corecore