6,094 research outputs found

    Is Our Model for Contention Resolution Wrong?

    Full text link
    Randomized binary exponential backoff (BEB) is a popular algorithm for coordinating access to a shared channel. With an operational history exceeding four decades, BEB is currently an important component of several wireless standards. Despite this track record, prior theoretical results indicate that under bursty traffic (1) BEB yields poor makespan and (2) superior algorithms are possible. To date, the degree to which these findings manifest in practice has not been resolved. To address this issue, we examine one of the strongest cases against BEB: nn packets that simultaneously begin contending for the wireless channel. Using Network Simulator 3, we compare against more recent algorithms that are inspired by BEB, but whose makespan guarantees are superior. Surprisingly, we discover that these newer algorithms significantly underperform. Through further investigation, we identify as the culprit a flawed but common abstraction regarding the cost of collisions. Our experimental results are complemented by analytical arguments that the number of collisions -- and not solely makespan -- is an important metric to optimize. We believe that these findings have implications for the design of contention-resolution algorithms.Comment: Accepted to the 29th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2017

    Parallel algorithm with spectral convergence for nonlinear integro-differential equations

    Get PDF
    We discuss a numerical algorithm for solving nonlinear integro-differential equations, and illustrate our findings for the particular case of Volterra type equations. The algorithm combines a perturbation approach meant to render a linearized version of the problem and a spectral method where unknown functions are expanded in terms of Chebyshev polynomials (El-gendi's method). This approach is shown to be suitable for the calculation of two-point Green functions required in next to leading order studies of time-dependent quantum field theory.Comment: 15 pages, 9 figure

    Unmet Needs in the Pathogenesis and Treatment of Systemic Lupus Erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE) is an autoimmune rheumatic disease with a prevalence of approximately 1 in 1000. Over the last 30 years, advances in treatment such as use of corticosteroids and immunosuppressants have improved life expectancy and quality of life for patients with lupus and the key unmet needs have therefore changed. With the reduced mortality from disease activity, development of cardiovascular disease (CVD) has become an increasingly important cause of death in patients with SLE. The increased CVD risk in these patients is partly, but not fully explained by standard risk factors, and abnormalities in the immune response to lipids may play a role. Invariant natural killer T cells, which are triggered specifically by lipid antigens, may protect against progression of subclinical atherosclerosis. However, currently our recommendation is that clinicians should focus on optimal management of standard CVD risk factors such as smoking, blood pressure and lipid levels. Fatigue is one of the most common and most limiting symptoms suffered by patients with SLE. The cause of fatigue is multifactorial and disease activity does not explain this symptom. Consequently, therapies directed towards reducing inflammation and disease activity do not reliably reduce fatigue and new approaches are needed. Currently, we recommend asking about sleep pattern, optimising pain relief and excluding other causes of fatigue such as anaemia and metabolic disturbances. For the subgroup of patients whose disease activity is not fully controlled by standard treatment regimes, a range of different biologic agents have been proposed and subjected to clinical trials. Many of these trials have given disappointing results, though belimumab, which targets B lymphocytes, did meet its primary endpoint. New biologics targeting B cells, T cells or cytokines (especially interferon) are still going through trials raising the hope that novel therapies for patients with refractory SLE may be available soon

    Case study: Anaesthesia implications and considerations in a case of pemphigus vulgaris for orthopaedic bipolar prosthesis implant surgery

    Get PDF
    A 60-year-old patient suffering from pemphigus vulgaris for the past year was admitted to the emergency ward for fracture neck of femur. She also presented with lesions involving oral mucosa, back, inframammary and genital areas which were in partial remission. In hospital she was diagnosed with hypertension and was put on anti-hypertensives. Special attention was paid during positioning for surgery, administration of regional anaesthesia and placement of the intravenous line as well as monitoring devices. General anaesthesia was avoided in the presence of partially active oral lesions. Combined spinal-epidural anaesthesia was administered using bupivacaine-clonidine mixture. No haemodynamic complication was observed with 30 μg of clonidine intrathecally and no skin lesion occurred at the site of injections or Tegaderm application

    Numerical Approximations Using Chebyshev Polynomial Expansions

    Full text link
    We present numerical solutions for differential equations by expanding the unknown function in terms of Chebyshev polynomials and solving a system of linear equations directly for the values of the function at the extrema (or zeros) of the Chebyshev polynomial of order N (El-gendi's method). The solutions are exact at these points, apart from round-off computer errors and the convergence of other numerical methods used in connection to solving the linear system of equations. Applications to initial value problems in time-dependent quantum field theory, and second order boundary value problems in fluid dynamics are presented.Comment: minor wording changes, some typos have been eliminate

    1+1 Dimensional Compactifications of String Theory

    Full text link
    We argue that stable, maximally symmetric compactifications of string theory to 1+1 dimensions are in conflict with holography. In particular, the finite horizon entropies of the Rindler wedge in 1+1 dimensional Minkowski and anti de Sitter space, and of the de Sitter horizon in any dimension, are inconsistent with the symmetries of these spaces. The argument parallels one made recently by the same authors, in which we demonstrated the incompatibility of the finiteness of the entropy and the symmetries of de Sitter space in any dimension. If the horizon entropy is either infinite or zero the conflict is resolved.Comment: 11 pages, 2 figures v2: added discussion of AdS_2 and comment

    Holographic Construction of Excited CFT States

    Full text link
    We present a systematic construction of bulk solutions that are dual to CFT excited states. The bulk solution is constructed perturbatively in bulk fields. The linearised solution is universal and depends only on the conformal dimension of the primary operator that is associated with the state via the operator-state correspondence, while higher order terms depend on detailed properties of the operator, such as its OPE with itself and generally involve many bulk fields. We illustrate the discussion with the holographic construction of the universal part of the solution for states of two dimensional CFTs, either on R×S1R \times S^1 or on R1,1R^{1,1}. We compute the 1-point function both in the CFT and in the bulk, finding exact agreement. We comment on the relation with other reconstruction approaches.Comment: 26 pages, 4 figures, v2: comments adde

    Time evolution of the chiral phase transition during a spherical expansion

    Full text link
    We examine the non-equilibrium time evolution of the hadronic plasma produced in a relativistic heavy ion collision, assuming a spherical expansion into the vacuum. We study the O(4)O(4) linear sigma model to leading order in a large-NN expansion. Starting at a temperature above the phase transition, the system expands and cools, finally settling into the broken symmetry vacuum state. We consider the proper time evolution of the effective pion mass, the order parameter ⟨σ⟩\langle \sigma \rangle, and the particle number distribution. We examine several different initial conditions and look for instabilities (exponentially growing long wavelength modes) which can lead to the formation of disoriented chiral condensates (DCCs). We find that instabilities exist for proper times which are less than 3 fm/c. We also show that an experimental signature of domain growth is an increase in the low momentum spectrum of outgoing pions when compared to an expansion in thermal equilibrium. In comparison to particle production during a longitudinal expansion, we find that in a spherical expansion the system reaches the ``out'' regime much faster and more particles get produced. However the size of the unstable region, which is related to the domain size of DCCs, is not enhanced.Comment: REVTex, 20 pages, 8 postscript figures embedded with eps
    • …
    corecore