1,018 research outputs found

    Array concepts for solid-state and vacuum microelectronics millimeter-wave generation

    Get PDF
    The authors have proposed that the increasing demand for contact watt-level coherent sources in the millimeter- and submillimeter-wave region can be satisfied by fabricating two-dimensional grids loaded with oscillators and multipliers for quasi-optical coherent spatial combining of the outputs of large numbers of low-power devices. This was first demonstrated through the successful fabrication of monolithic arrays with 2000 Schottky diodes. Watt-level power outputs were obtained in doubling to 66 GHz. In addition, a simple transmission-line model was verified with a quasi-optical reflectometer that measured the array impedance. This multiplier array work is being extended to novel tripler configurations using blocking barrier devices. The technique has also been extended to oscillator configurations where the grid structure is loaded with negative-resistance devices. This was first demonstrated using Gunn devices. More recently, a 25-element MESFET grid oscillating at 10 GHz exhibited power combining and self-locking. Currently, this approach is being extended to a 100-element monolithic array of Gunn diodes. This same approach should be applicable to planar vacuum electron devices such as the submillimeter-wave BWO (backward wave oscillator) and vacuum FET

    The effects of nonlocality on the evolution of higher order fluxes in non-equilibrium thermodynamics

    Full text link
    The role of gradient dependent constitutive spaces is investigated on the example of Extended Thermodynamics of rigid heat conductors. Different levels of nonlocality are developed and the different versions of extended thermodynamics are classified. The local form of the entropy density plays a crucial role in the investigations. The entropy inequality is solved under suitable constitutive assumptions. Balance form of evolution equations is obtained in special cases. Closure relations are derived on a phenomenological level.Comment: 16 pages, 1 figur

    Archimedean-type force in a cosmic dark fluid: II. Qualitative and numerical study of a multistage Universe expansion

    Get PDF
    In this (second) part of the work we present the results of numerical and qualitative analysis, based on a new model of the Archimedean-type interaction between dark matter and dark energy. The Archimedean-type force is linear in the four-gradient of the dark energy pressure and plays a role of self-regulator of the energy redistribution in a cosmic dark fluid. Because of the Archimedean-type interaction the cosmological evolution is shown to have a multistage character. Depending on the choice of the values of the model guiding parameters,the Universe's expansion is shown to be perpetually accelerated, periodic or quasiperiodic with finite number of deceleration/acceleration epochs. We distinguished the models, which can be definitely characterized by the inflation in the early Universe, by the late-time accelerated expansion and nonsingular behavior in intermediate epochs, and classified them with respect to a number of transition points. Transition points appear, when the acceleration parameter changes the sign, providing the natural partition of the Universe's history into epochs of accelerated and decelerated expansion. The strategy and results of numerical calculations are advocated by the qualitative analysis of the instantaneous phase portraits of the dynamic system associated with the key equation for the dark energy pressure evolution.Comment: 15 pages, 12 figures, Part II, typos corrected, Fig.4 replaced, references correcte

    Vortex length, vortex energy and fractal dimension of superfluid turbulence at very low temperature

    Full text link
    By assuming a self-similar structure for Kelvin waves along vortex loops with successive smaller scale features, we model the fractal dimension of a superfluid vortex tangle in the zero temperature limit. Our model assumes that at each step the total energy of the vortices is conserved, but the total length can change. We obtain a relation between the fractal dimension and the exponent describing how the vortex energy per unit length changes with the length scale. This relation does not depend on the specific model, and shows that if smaller length scales make a decreasing relative contribution to the energy per unit length of vortex lines, the fractal dimension will be higher than unity. Finally, for the sake of more concrete illustration, we relate the fractal dimension of the tangle to the scaling exponents of amplitude and wavelength of a cascade of Kelvin waves.Comment: 12 pages, 1 figur

    Test of Information Theory on the Boltzmann Equation

    Get PDF
    We examine information theory using the steady-state Boltzmann equation. In a nonequilibrium steady-state system under steady heat conduction, the thermodynamic quantities from information theory are calculated and compared with those from the steady-state Boltzmann equation. We have found that information theory is inconsistent with the steady-state Boltzmann equation.Comment: 12 page

    On the dual interpretation of zero-curvature Friedmann-Robertson-Walker models

    Get PDF
    Two possible interpretations of FRW cosmologies (perfect fluid or dissipative fluid)are considered as consecutive phases of the system. Necessary conditions are found, for the transition from perfect fluid to dissipative regime to occur, bringing out the conspicuous role played by a particular state of the system (the ''critical point '').Comment: 13 pages Latex, to appear in Class.Quantum Gra

    Hyperbolic subdiffusive impedance

    Full text link
    We use the hyperbolic subdiffusion equation with fractional time derivatives (the generalized Cattaneo equation) to study the transport process of electrolytes in media where subdiffusion occurs. In this model the flux is delayed in a non-zero time with respect to the concentration gradient. In particular, we obtain the formula of electrochemical subdiffusive impedance of a spatially limited sample in the limit of large and of small pulsation of the electric field. The boundary condition at the external wall of the sample are taken in the general form as a linear combination of subdiffusive flux and concentration of the transported particles. We also discuss the influence of the equation parameters (the subdiffusion parameter and the delay time) on the Nyquist impedance plots.Comment: 10 pages, 5 figure

    Stability of inflationary solutions driven by a changing dissipative fluid

    Get PDF
    In this paper the second Lyapunov method is used to study the stability of the de Sitter phase of cosmic expansion when the source of the gravitational field is a viscous fluid. Different inflationary scenarios related with reheating and decay of mini-blackholes into radiation are investigated using an effective fluid described by time--varying thermodynamical quantities.Comment: 17 pages, LaTeX 2.09, 2 figures. To be published in Classical and Quantum Gravit

    Precipitation Model Validation in 3rd Generation Aeroturbine Disc Alloys

    Get PDF
    In support of application of the DARPA-AIM methodology to the accelerated hybrid thermal process optimization of 3rd generation aeroturbine disc alloys with quantified uncertainty, equilibrium and diffusion couple experiments have identified available fundamental thermodynamic and mobility databases of sufficient accuracy. Using coherent interfacial energies quantified by Single-Sensor DTA nucleation undercooling measurements, PrecipiCalc(TM) simulations of nonisothermal precipitation in both supersolvus and subsolvus treated samples show good agreement with measured gamma particle sizes and compositions. Observed longterm isothermal coarsening behavior defines requirements for further refinement of elastic misfit energy and treatment of the parallel evolution of incoherent precipitation at grain boundaries
    corecore