648 research outputs found

    Trace formulae for three-dimensional hyperbolic lattices and application to a strongly chaotic tetrahedral billiard

    Full text link
    This paper is devoted to the quantum chaology of three-dimensional systems. A trace formula is derived for compact polyhedral billiards which tessellate the three-dimensional hyperbolic space of constant negative curvature. The exact trace formula is compared with Gutzwiller's semiclassical periodic-orbit theory in three dimensions, and applied to a tetrahedral billiard being strongly chaotic. Geometric properties as well as the conjugacy classes of the defining group are discussed. The length spectrum and the quantal level spectrum are numerically computed allowing the evaluation of the trace formula as is demonstrated in the case of the spectral staircase N(E), which in turn is successfully applied in a quantization condition.Comment: 32 pages, compressed with gzip / uuencod

    Cosmic Topology of Polyhedral Double-Action Manifolds

    Full text link
    A special class of non-trivial topologies of the spherical space S^3 is investigated with respect to their cosmic microwave background (CMB) anisotropies. The observed correlations of the anisotropies on the CMB sky possess on large separation angles surprising low amplitudes which might be naturally be explained by models of the Universe having a multiconnected spatial space. We analysed in CQG 29(2012)215005 the CMB properties of prism double-action manifolds that are generated by a binary dihedral group D^*_p and a cyclic group Z_n up to a group order of 180. Here we extend the CMB analysis to polyhedral double-action manifolds which are generated by the three binary polyhedral groups (T^*, O^*, I^*) and a cyclic group Z_n up to a group order of 1000. There are 20 such polyhedral double-action manifolds. Some of them turn out to have even lower CMB correlations on large angles than the Poincare dodecahedron

    Dodecahedral topology fails to explain quadrupole-octupole alignment

    Full text link
    The CMB quadrupole and octupole, as well as being weaker than expected, align suspiciously well with each other. Non-trivial spatial topology can explain the weakness. Might it also explain the alignment? The answer, at least in the case of the Poincare dodecahedral space, is a resounding no.Comment: 5 pages, 1 figur

    Cosmic microwave anisotropies in an inhomogeneous compact flat universe

    Full text link
    The anisotropies of the cosmic microwave background (CMB) are computed for the half-turn space E_2 which represents a compact flat model of the Universe, i.e. one with finite volume. This model is inhomogeneous in the sense that the statistical properties of the CMB depend on the position of the observer within the fundamental cell. It is shown that the half-turn space describes the observed CMB anisotropies on large scales better than the concordance model with infinite volume. For most observer positions it matches the temperature correlation function even slightly better than the well studied 3-torus topology

    How well-proportioned are lens and prism spaces?

    Full text link
    The CMB anisotropies in spherical 3-spaces with a non-trivial topology are analysed with a focus on lens and prism shaped fundamental cells. The conjecture is tested that well proportioned spaces lead to a suppression of large-scale anisotropies according to the observed cosmic microwave background (CMB). The focus is put on lens spaces L(p,q) which are supposed to be oddly proportioned. However, there are inhomogeneous lens spaces whose shape of the Voronoi domain depends on the position of the observer within the manifold. Such manifolds possess no fixed measure of well-proportioned and allow a predestined test of the well-proportioned conjecture. Topologies having the same Voronoi domain are shown to possess distinct CMB statistics which thus provide a counter-example to the well-proportioned conjecture. The CMB properties are analysed in terms of cyclic subgroups Z_p, and new point of view for the superior behaviour of the Poincar\'e dodecahedron is found

    Spectral Statistics in the Quantized Cardioid Billiard

    Full text link
    The spectral statistics in the strongly chaotic cardioid billiard are studied. The analysis is based on the first 11000 quantal energy levels for odd and even symmetry respectively. It is found that the level-spacing distribution is in good agreement with the GOE distribution of random-matrix theory. In case of the number variance and rigidity we observe agreement with the random-matrix model for short-range correlations only, whereas for long-range correlations both statistics saturate in agreement with semiclassical expectations. Furthermore the conjecture that for classically chaotic systems the normalized mode fluctuations have a universal Gaussian distribution with unit variance is tested and found to be in very good agreement for both symmetry classes. By means of the Gutzwiller trace formula the trace of the cosine-modulated heat kernel is studied. Since the billiard boundary is focusing there are conjugate points giving rise to zeros at the locations of the periodic orbits instead of exclusively Gaussian peaks.Comment: 20 pages, uu-encoded ps.Z-fil

    Level spacings and periodic orbits

    Full text link
    Starting from a semiclassical quantization condition based on the trace formula, we derive a periodic-orbit formula for the distribution of spacings of eigenvalues with k intermediate levels. Numerical tests verify the validity of this representation for the nearest-neighbor level spacing (k=0). In a second part, we present an asymptotic evaluation for large spacings, where consistency with random matrix theory is achieved for large k. We also discuss the relation with the method of Bogomolny and Keating [Phys. Rev. Lett. 77 (1996) 1472] for two-point correlations.Comment: 4 pages, 2 figures; major revisions in the second part, range of validity of asymptotic evaluation clarifie

    Whole Farm Modeling of the Effect of Risk on Optimal Tillage and Nitrogen Fertilizer Intensity

    Get PDF
    nitrogen, tillage, risk, risk aversion, Crop Production/Industries, Farm Management, Production Economics, Risk and Uncertainty,

    CMB Anisotropy of Spherical Spaces

    Full text link
    The first-year WMAP data taken at their face value hint that the Universe might be slightly positively curved and therefore necessarily finite, since all spherical (Clifford-Klein) space forms M^3 = S^3/Gamma, given by the quotient of S^3 by a group Gamma of covering transformations, possess this property. We examine the anisotropy of the cosmic microwave background (CMB) for all typical groups Gamma corresponding to homogeneous universes. The CMB angular power spectrum and the temperature correlation function are computed for the homogeneous spaces as a function of the total energy density parameter Omega_tot in the large range [1.01, 1.20] and are compared with the WMAP data. We find that out of the infinitely many homogeneous spaces only the three corresponding to the binary dihedral group T*, the binary octahedral group O*, and the binary icosahedral group I* are in agreement with the WMAP observations. Furthermore, if Omega_tot is restricted to the interval [1.00, 1.04], the space described by T* is excluded since it requires a value of Omega_tot which is probably too large being in the range [1.06, 1.07]. We thus conclude that there remain only the two homogeneous spherical spaces S^3/O* and S^3/I* with Omega_tot of about 1.038 and 1.018, respectively, as possible topologies for our Universe.Comment: A version with high resolution sky maps can be obtained at http://www.physik.uni-ulm.de/theo/qc

    Hot pixel contamination in the CMB correlation function?

    Full text link
    Recently, it was suggested that the map-making procedure, which is applied to the time-ordered CMB data by the WMAP team, might be flawed by hot pixels. This could lead to a bias in the pixels having an angular distance of about 141 degrees from hot pixels due to the differential measuring process of the satellite WMAP. Here, the bias is confirmed, and the temperature two-point correlation function C(theta) is reevaluated by excluding the affected pixels. It is shown that the most significant effect occurs in C(theta) at the largest angles near theta = 180 degrees. Furthermore, the corrected correlation function C(theta) is applied to the cubic topology of the Universe, and it is found that such a multi-connected universe matches the temperature correlation better than the LCDM concordance model, provided the cubic length scale is close to L=4 measured in units of the Hubble length
    corecore