66 research outputs found

    Emulsifiers as Additives in Fats: Effect on Polymorphic Transformations and Crystal Properties of Fatty Acids and Triglycerides

    Get PDF
    The role of emulsifiers in polymorphic transformations of fats and fatty acids is treated in this paper. Their effect as crystal modifiers in solution-mediated transformations (in fatty acids) is compared to that of a dynamic controller of polymorphic transformations in triglycerides. The importance of chemical structure both in the hydrophilic and in the hydrophobic moieties of the emulsifier for an inhibitory effect on phase transitions has been emphasized. The emulsifier solubility and crystallization behavior in different solvents are probably the main factors affecting its ability to interfere with the kinetics of solution-mediated transformations. On the other hand, certain requirements for a specific chemical structure of the emulsifier which provides good structure compatibility, must be met in order to affect the kinetics and mechanism of solid-solid or melt-mediated transformations. A mechanism of emulsifier incorporation in the fat and its effect in delaying the polymorphic transformation of tristearin is proposed. It has been concluded that the presence of the emulsifier does not dictate the formation of any preferred polymorph but rather controls the mobility of the molecules and their facility to undergo polymorphic transformations. The relationship between polymorphism in fats and presence of additives plays a major role in the food industry, because of the serious quality implications involved in phase transitions

    Extraction of cocoa butter by supercritical carbon dioxide: optimization of operating conditions and effect of particle size.

    Get PDF
    The optimum operating conditions for the extraction of cocoa butter from cocoa liquor using supercritical carbon dioxide and the effect of sample particle size on cocoa butter extraction under optimized operating conditions were investigated. The optimization was conducted at 10–45 MPa and 35–75C, with extraction times of 1–12 h by response surface methodology. The effect of particle size was studied using cocoa liquor, ground cocoa nibs and crushed cocoa nibs with particle sizes of approximately 74 µm, 0.85–1 mm and 4–6 mm, respectively. The yield was analyzed for total fat content by gravimetric method and triacylglycerol (TAG) profile by high-performance liquid chromatography. The results showed higher yield of cocoa butter with higher values of pressure, temperature and extraction time. The optimum conditions for cocoa butter extraction were 45 MPa, 75C and 12 h. The smaller particle size produced a higher yield of cocoa butter. 1,3-Dipalmitoyl-2-oleoyl-glycerol (POP), 1-palmitoyl-2-oleoyl-3-stearoyl-glycerol (POS) and 1,3-distearoyl-2-oleoyl-glycerol (SOS) were the major TAGs present in the extracted cocoa butter, with POS being the highest (>30%) for all treatments studied

    Solvent-Free Melting Techniques for the Preparation of Lipid-Based Solid Oral Formulations

    Get PDF

    Modeling Rate Dependent Damage Evolution in Composite Structures

    No full text
    corecore