1,252 research outputs found

    Galaxy number counts in the Hubble Deep Field as a strong constraint on a hierarchical galaxy formation model

    Get PDF
    Number counts of galaxies are re-analyzed using a semi-analytic model (SAM) of galaxy formation based on the hierarchical clustering scenario. We have determined the astrophysical parameters in the SAM that reproduce observations of nearby galaxies, and used them to predict the number counts and redshifts of faint galaxies for three cosmological models for (1) the standard cold dark matter (CDM) universe, (2) a low-density flat universe with nonzero cosmological constant, and (3) a low-density open universe with zero cosmological constant. The novelty of our SAM analysis is the inclusion of selection effects arising from the cosmological dimming of surface brightness of high-redshift galaxies, and also from the absorption of visible light by internal dust and intergalactic \ion{H}{1} clouds. Contrary to previous SAM analyses which do not take into account such selection effects, we find, from comparison with observed counts and redshifts of faint galaxies in the Hubble Deep Field (HDF), that the standard CDM universe is {\it not} preferred, and a low-density universe either with or without cosmological constant is favorable, as suggested by other recent studies. Moreover, we find that a simple prescription for the time scale of star formation (SF), being proportional to the dynamical time scale of the formation of the galactic disk, is unable to reproduce the observed number- redshift relation for HDF galaxies, and that the SF time scale should be nearly independent of redshift, as suggested by other SAM analyses for the formation of quasars and the evolution of damped Ly-α\alpha systems.Comment: 16 pages, 13 figures, LaTeX, using emulateapj5.st

    Unavoidable Selection Effects in the Analysis of Faint Galaxies in the Hubble Deep Field: Probing the Cosmology and Merger History of Galaxies

    Get PDF
    (Abridged) We present a detailed analysis of the number count and photometric redshift distribution of faint galaxies in the Hubble Deep Field (HDF), paying a special attention to the selection effects including the cosmological dimming of surface brightness of galaxies. We find a considerably different result from previous studies ignoring the selection effects, and these effects should therefore be taken into account in the analysis. We find that the model of pure luminosity evolution (PLE) of galaxies in the Einstein-de Sitter (EdS) universe predicts much smaller counts than those observed at faint magnitude limits by a factor of more than 10, so that a very strong number evolution of galaxies with \eta > 3-4 must be invoked to reproduce the I_{814} counts, when parametrized as \phi^* \propto (1+z)^\eta. However we show that such a strong number evolution under realistic merging processes of galaxies can not explain the steep slope of the B_{450} and V_{606} counts, and it is seriously inconsistent with their photometric redshift distribution. We find that these difficulties still persist in an open universe with \Omega_0 > 0.2, but are resolved only when we invoke a Λ\Lambda-dominated flat universe, after examining various systematic uncertainties in modeling the formation and evolution of galaxies. The present analysis revitalizes the practice of using faint number counts as an important cosmological test, giving one of the arguments against the EdS universe and suggests acceleration of the cosmic expansion by vacuum energy density. While a modest number evolution of galaxies with \eta ~ 1 is still necessary even in a Lambda-dominated universe, a stronger number evolution with \eta > 1 is rejected from the HDF data, giving a strong constraint on the merger history of galaxies.Comment: 24 pages, 15 figures, final version matching publication in ApJ. Some references added. The complete ps file of Table 3 is available at http://th.nao.ac.jp/~totani/images/paper/ty2000-table3.p

    Galaxy Evolution, Deep Galaxy Counts and the Near-IR Cosmic Infrared Background

    Full text link
    Accurate synthetic models of stellar populations are constructed and used in evolutionary models of stellar populations in forming galaxies. Following their formation, the late type galaxies are assumed to follow the Schmidt law for star formation, while early type galaxies are normalized to the present-day fundamental plane relations assumed to mimic the metallicity variations along their luminosity sequence. We then compute predictions of these models for the observational data at early epochs for various cosmological parameters Ω,ΩΛ\Omega, \Omega_\Lambda and H0H_0. We find good match to the metallicity data from the damped LαL_\alpha systems and the evolution of the luminosity density out to z1z\simeq 1. Likewise, our models provide good fits for low values of Ω\Omega to the deep number counts of galaxies in all bands where data is available; this is done without assuming existence of extra populations of galaxies at high zz. Our models also match the data on the redshift distribution of galaxy counts in BB and KK bands. We compute the predicted mean levels and angular distribution of the cosmic infrared background produced from the early evolution of galaxies. The predicted fluxes and fluctuations are still below the current observational limits, but not by a large factor. Finally, we find that the recent detection of the diffuse extragalactic light in the visible bands requires for our models high redshift of galaxy formation, zfz_f \geq(3-4); otherwise the produced flux of the extragalactic light at optical bands exceeds the current observational limits.Comment: Accepted to Ap

    Galaxy Number Counts in the Subaru Deep Field: Multi-band Analysis in a Hierarchical Galaxy Formation Model

    Get PDF
    Number counts of galaxies are re-analyzed using a semi-analytic model (SAM) of galaxy formation based on the hierarchical clustering scenario. Faint galaxies in the Subaru Deep Field (SDF) and the Hubble Deep Field (HDF) are compared with our model galaxies. We have determined the astrophysical parameters in the SAM that reproduce observations of nearby galaxies, and used them to predict the number counts and redshifts of faint galaxies for three cosmological models, the standard cold dark matter (CDM) universe, a flat lambda-CDM, and an open CDM. The novelty of our SAM analysis is the inclusion of selection effects arising from the cosmological dimming of surface brightness of high-z galaxies, and from the absorption of visible light by internal dust and intergalactic HI clouds. As was found in our previous work, in which the UV/optical HDF galaxies were compared with our model galaxies, we find that our SAM reproduces counts of near-IR SDF galaxies in low-density models, and that the standard CDM universe is not preferred, as suggested by other recent studies. Moreover, we find that simple prescriptions for (1) the timescale of star formation being proportional to the dynamical time scale of the formation of galactic disks, (2) the size of galactic disks being rotationally supported with the same specific angular momentum as that of surrounding dark halo, and (3) the dust optical depth being proportional to the metallicity of cold gas, cannot completely explain all of observed data. Improved prescriptions incorporating mild z-dependence for those are suggested from our SAM analysis.Comment: 16 pages, 13 figures, to appear in Ap
    corecore