149 research outputs found

    Fourier PCA and Robust Tensor Decomposition

    Full text link
    Fourier PCA is Principal Component Analysis of a matrix obtained from higher order derivatives of the logarithm of the Fourier transform of a distribution.We make this method algorithmic by developing a tensor decomposition method for a pair of tensors sharing the same vectors in rank-11 decompositions. Our main application is the first provably polynomial-time algorithm for underdetermined ICA, i.e., learning an nĂ—mn \times m matrix AA from observations y=Axy=Ax where xx is drawn from an unknown product distribution with arbitrary non-Gaussian components. The number of component distributions mm can be arbitrarily higher than the dimension nn and the columns of AA only need to satisfy a natural and efficiently verifiable nondegeneracy condition. As a second application, we give an alternative algorithm for learning mixtures of spherical Gaussians with linearly independent means. These results also hold in the presence of Gaussian noise.Comment: Extensively revised; details added; minor errors corrected; exposition improve

    Learning Arbitrary Statistical Mixtures of Discrete Distributions

    Get PDF
    We study the problem of learning from unlabeled samples very general statistical mixture models on large finite sets. Specifically, the model to be learned, ϑ\vartheta, is a probability distribution over probability distributions pp, where each such pp is a probability distribution over [n]={1,2,…,n}[n] = \{1,2,\dots,n\}. When we sample from ϑ\vartheta, we do not observe pp directly, but only indirectly and in very noisy fashion, by sampling from [n][n] repeatedly, independently KK times from the distribution pp. The problem is to infer ϑ\vartheta to high accuracy in transportation (earthmover) distance. We give the first efficient algorithms for learning this mixture model without making any restricting assumptions on the structure of the distribution ϑ\vartheta. We bound the quality of the solution as a function of the size of the samples KK and the number of samples used. Our model and results have applications to a variety of unsupervised learning scenarios, including learning topic models and collaborative filtering.Comment: 23 pages. Preliminary version in the Proceeding of the 47th ACM Symposium on the Theory of Computing (STOC15

    Synthesize and characterization of clay based low-cost membrane for solid-liquid separation

    Get PDF
    In this work, locally available clay material was mixed with inorganic materials to synthesize the low-cost ceramic membrane in microfiltration range. Membrane was sintered at different temperatures (800-950oC) and the effect of sintered temperature on membrane preparation was studied in detail. The membrane porosity was found to decrease (44-30%) with membrane sintering temperatures (800-950oC). The corrosion resistance of the prepared ceramic membranes at different sintering temperatures was analyzed using N-methyl-2-pyrrolidone (NMP), NaOH and HCl. It was observed that the elemental composition by EDX analysis and porosity measurement of the synthesized membrane was found almost invariant. Finally, the synthesized membranes were characterized by scanning electron microscope (SEM) and Fourier transform infrared (FT-IR) spectra analysis to study their morphological properties and porosity measurement, and functional group analysis, respectively. The abrupt morphological changes on the membrane surface and micro porosity formation at 800oC sintering temperature suggest that the synthesized clay based ceramic membrane could be used for various solid-liquid separations.&nbsp

    Efficiency of rate-maximization game under bounded channel uncertainty

    Get PDF
    The problem of competitive rate-maximization is an important signal-processing problem for power-constrained multi-user systems. It involves solving the power control problem for mutually interfering users operating across multiple frequencies. We introduced robust rate-maximization game for systems with bounded channel uncertainty. In this paper, we analyse the effect of uncertainty on the global efficiency of the robust rate-maximization game. For a two-user scenario with large number of frequencies, we show that the robust-optimization equilibrium tends to move towards FDMA solution as the uncertainty bound increases and thus increases the sum-rate for interference-constrained systems where FDMA is Pareto-optimal. These results are verified through simulations

    Concurrent bandits and cognitive radio networks

    Full text link
    We consider the problem of multiple users targeting the arms of a single multi-armed stochastic bandit. The motivation for this problem comes from cognitive radio networks, where selfish users need to coexist without any side communication between them, implicit cooperation or common control. Even the number of users may be unknown and can vary as users join or leave the network. We propose an algorithm that combines an ϵ\epsilon-greedy learning rule with a collision avoidance mechanism. We analyze its regret with respect to the system-wide optimum and show that sub-linear regret can be obtained in this setting. Experiments show dramatic improvement compared to other algorithms for this setting

    A Spectral Algorithm with Additive Clustering for the Recovery of Overlapping Communities in Networks

    Get PDF
    This paper presents a novel spectral algorithm with additive clustering designed to identify overlapping communities in networks. The algorithm is based on geometric properties of the spectrum of the expected adjacency matrix in a random graph model that we call stochastic blockmodel with overlap (SBMO). An adaptive version of the algorithm, that does not require the knowledge of the number of hidden communities, is proved to be consistent under the SBMO when the degrees in the graph are (slightly more than) logarithmic. The algorithm is shown to perform well on simulated data and on real-world graphs with known overlapping communities.Comment: Journal of Theoretical Computer Science (TCS), Elsevier, A Para\^itr

    TensorLy: tensor learning in Python

    Get PDF
    Tensors are higher-order extensions of matrices. While matrix methods form the cornerstone of traditional machine learning and data analysis, tensor methods have been gaining increasing traction. However, software support for tensor operations is not on the same footing. In order to bridge this gap, we have developed TensorLy, a Python library that provides a high-level API for tensor methods and deep tensorized neural networks. TensorLy aims to follow the same standards adopted by the main projects of the Python scientific community, and to seamlessly integrate with them. Its BSD license makes it suitable for both academic and commercial applications. TensorLy's backend system allows users to perform computations with several libraries such as NumPy or PyTorch to name but a few. They can be scaled on multiple CPU or GPU machines. In addition, using the deep-learning frameworks as backend allows to easily design and train deep tensorized neural networks. TensorLy is available at https://github.com/tensorly/tensorl

    Multi-task learning for electronic structure to predict and explore molecular potential energy surfaces

    Get PDF
    We refine the OrbNet model to accurately predict energy, forces, and other response properties for molecules using a graph neural-network architecture based on features from low-cost approximated quantum operators in the symmetry-adapted atomic orbital basis. The model is end-to-end differentiable due to the derivation of analytic gradients for all electronic structure terms, and is shown to be transferable across chemical space due to the use of domain-specific features. The learning efficiency is improved by incorporating physically motivated constraints on the electronic structure through multi-task learning. The model outperforms existing methods on energy prediction tasks for the QM9 dataset and for molecular geometry optimizations on conformer datasets, at a computational cost that is thousand-fold or more reduced compared to conventional quantum-chemistry calculations (such as density functional theory) that offer similar accuracy
    • …
    corecore