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Abstract—The problem of competitive rate-maximization is
an important signal-processing problem for power-constrained
multi-user systems. It involves solving the power control prob-
lem for mutually interfering users operating across multiple
frequencies. We introduced robust rate-maximization game for
systems with bounded channel uncertainty. In this paper, we
analyse the effect of uncertainty on the global efficiency of
the robust rate-maximization game. For a two-user scenario
with large number of frequencies, we show that the robust-
optimization equilibrium tends to move towards FDMA solution
as the uncertainty bound increases and thus increases the sum-
rate for interference-constrained systems where FDMA is Pareto-
optimal. These results are verified through simulations.

I. INTRODUCTION
The use of game theory as a tool for the analysis and

study of communications problems has grown over the last
decade [1]. Game theory provides useful insight into the design
and analysis of multi-agent systems where the actions of one
user affects the payoffs of other users. Typically, multi-agent
systems involve multi-objective optimization problems which
are analytically complex and difficult to solve, especially using
distributed algorithms. The lack of equilibrium in such systems
will mean that they are inherently unstable. Game theory
provides a strong framework of well-defined equilibrium con-
ditions under various conditions. The Nash equilibrium (NE)
is a particularly useful result for systems where the users
compete with each other [2].
The sequential iterative waterfilling algorithm for maximiz-

ing information rates in digital subscriber line systems [3]
was one of the earliest works which used a game-theoretic
approach to design a decentralized algorithm for multi-user
dynamic power control. At any Nash equilibrium of this rate-
maximization game, given that the power allocations of other
users is constant, no user can further increase the achieved
information rate unilaterally. However, this work and others
extending this work such as [4]–[7] all assume perfect channel
state information. This is a very strong requirement and cannot
be met by practical systems.
The traditional game-theoretic solution for systems with

imperfect information is the Bayesian game model [2] which
uses a probabilistic approach to model the uncertainty in the
system. However, a Bayesian approach is often intractable
and the results strongly depend on the nature of the proba-
bility distribution functions. Techniques to define the bounded
uncertainty sets in specific distributed optimization problems

in communication networks so that they can be solved dis-
tributively by robust-optimization solutions are presented in
[8]. A distribution-free robust game model for incomplete-
information finite games where the players use a robust
optimization approach to counter bounded payoff uncertainty
is presented in [9]. This robust game model also introduced
a distribution-free equilibrium concept called the robust-
optimization equilibrium. However, the results in [9] for the
robust game model are limited to finite games, which is not
applicable here.
A numerical solution to a robust optimization approach

for the rate-maximization game with uncertainty is briefly
considered in [10]. A robust iterative waterfilling algorithm
based on a probabilistically constrained optimization approach
for a system where the noise-plus-interference levels are
quantized is presented in [11]. A robust waterfilling algorithm
for a cognitive radio scenario with uncertainty in the primary
channel is presented in [12].
We presented a distribution-free robust game formulation

for the rate-maximization game where non-cooperative users
formulate best responses to worst-case interference to counter
channel uncertainty [13]. In this work we analyse the global
efficiency of the robust rate-maximization game and present
conditions when increasing uncertainty will result in increas-
ing sum-rate.
This paper is organized as follows: Section II describes the

system model and necessary preliminaries. Section III is a
review of the robust rate-maximization game under bounded
channel uncertainty [13]. Section IV presents the analysis of
efficiency of the equilibrium for the two-user case under a
large number of frequencies. Section V presents the simulation
results and finally Section VI draws the conclusions from this
work.
Notations used: The expectation operator is denoted by

E{·}. The quantity [A]ij refers to the (i, j)-th element of A.
R

m×n
+ is the set of m × n matrices with real non-negative
elements. The spectral radius (largest eigenvalue) of matrix
A is denoted by ρ(A) [14]. The operation [x]ba is defined as
[x]ba = a if x ≤ a; x if a < x < b; b if x ≥ b.

II. SYSTEM MODEL

The system model is described in detail in [?]. In brief, we
have a frequency-selective Gaussian interference channel with
N frequencies, composed of Q SISO links, where Hrq(k)
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is the normalized frequency response of the k-th frequency
bin of the channel between source r and destination q and
σ2
q (k) is the normalized noise variance at receiver q in the k-
th frequency bin. The normalized power allocated to the k-th
frequency bin by user q is pq(k). The power allocation vector
of each user q has two constraints: (a) Maximum total transmit
power for each user, 1

N

∑N
k=1 pq(k) ≤ 1; (b) Spectral mask

constraints, pq(k) ≤ pmax
q (k). The power allocation vectors

are public information, i.e. known to all users.
The channel between itself and all the transmitters is

estimated by each receiver, which is private information
known only to itself. The power allocation vectors of all
users is public information, i.e. known to all users. The
optimal power allocation across the frequency bins for its
own link is computed by each receiver and sent back to the
corresponding transmitter in a low bit-rate error-free feedback
channel. Note that this leads to sharing of more information
compared to other works in literature such as [6]. The channel
state information estimated by each receiver is assumed to
have a bounded uncertainty of unknown distribution, which
is approximated to be an ellipsoid uncertainty set [15]. We
consider that at each frequency, the uncertainty in the channel
state information of each user is deterministically modelled
under an ellipsoid approximation as

Fq =

{
Frq(k) + ΔFrq,k :

∑
r �=q

|ΔFrq,k|
2 ≤ ε2q

}
, (1)

for k = 1, . . . , N, where εq ≥ 0 ∀ q ∈ Ω is the uncertainty
bound and

Frq(k) �
|Hrq(k)|

2

|Hqq(k)|2
, (2)

with Frq(k) being the nominal value. We can consider uncer-
tainty in Frq instead of Hrq(k) since bounded uncertainties in
Frq(k) and Hrq(k) are equivalent, but with different bounds.
The nominal information rate (i.e. assuming zero uncer-

tainty) of user q can be written as [16]

Rq =

N∑
k=1

log

(
1 +

pq(k)

σ2
q (k) +

∑
r �=q Frq(k)pr(k)

)
, (3)

“Inefficiency” of the equilibria of a game are often charac-
terized using the price of anarchy and the price of stability
of the equilibrium. The price of anarchy is defined as the
ratio between the objective function value at the socially
optimal solution and the worst objective function value at any
equilibrium of the game [17]. The price of stability is defined
as the ratio between the objective function value at the socially
optimal solution and the best objective function value at any
equilibrium of the game [17]. We consider the sum-rate of the
system to be our social objective function. The sum-rate of
the system is given by

S =

Q∑
q=1

Rq (4)

In our case, the price of stability and anarchy are the same
due to the existence of a unique equilibrium as shown in

Theorem 1. Thus, the price of anarchy, PoA, is the ratio
of the sum-rate of the system at the social optimal solution,
S∗, and the sum-rate of the system at the robust-optimization
equilibrium, Srob, i.e.,

PoA =
S∗

Srob
(5)

Note that a more efficient equilibrium has a lower price of
anarchy.

III. OVERVIEW OF ROBUST RATE-MAXIMIZATION GAME

In this section, we present a brief overview of the ro-
bust rate-maximization game that was introduced in [13].
In the robust rate-maximization game, each user formulates
the best response while considering the worst-case multi-user
interference that could be observed, given the strategies of
the other users. The robust rate-maximization game can be
mathematically defined as, ∀ q ∈ Ω,

max
pq

N∑
k=1

log
(
1+

pq(k)

σ2
q(k) +

∑
r �=q

Frq(k)pr(k)+ εq
√∑

r �=q

p2r(k)

)

s. t. pq ∈ Pq. (6)

where Pq is the set of admissible strategies of user q, which
is defined as

Pq �

{
pq ∈R

N :
1

N

N∑
k=1

pq(k) = 1,

0 ≤ pq(k) ≤ pmax
q (k), k = 1, . . . , N

}
.

(7)

The solution to this game is the robust-optimization equi-
librium (RE). At any robust-optimization equilibrium of this
game, the optimum action profile of the players {p�

q}q∈Ω
must satisfy the following set of simultaneous waterfilling
equations: ∀q ∈ Ω,

p�
q = RWFq(p

�
−q). (8)

where
[
RWFq(p−q)

]
k
�

⎡
⎣μq − σ2

q (k)−
∑
r �=q

Frq(k)pr(k)− εq

√∑
r �=q

p2r(k)

⎤
⎦
pmax

q
(k)

0
(9)

The robust waterfilling operation for each user is a dis-
tributed worst-case optimization under bounded channel un-
certainty. We can see that an additional term has appeared in
(9) for εq > 0 when compared with the original waterfilling
operation in [6] under perfect CSI (i.e. εq = 0 ∀q).
This additional term acts as a penalty against allocating

power to frequencies that have a large product of the uncer-
tainty bound and the norm of the powers of the other players
currently transmitting in those frequencies. This is caused
by the users assuming the worst-case interference from other
users and are thus being conservative about allocating power
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to such channels where there is a strong presence of other
users.
Let N = {1, . . . , N} be the set of frequency bins. Let D◦q

denote the set of frequency bins that user q would never use
as the best response to any set of strategies adopted by the
other users,

D◦q �

{
k ∈ {1, . . . , N} :[

RWFq(p−q)
]
k
= 0 ∀p−q ∈ P−q

} (10)

where P−q � P1 × · · · × Pq−1 ×Pq+1 × · · · × PQ. The non-
negative matrices E and Smax ∈ R

Q×Q
+ are defined as

[E]qr �

{
εq, if r �= q,

0, otherwise,
(11)

and

[Smax]qr �

{
max

k∈Dq∩Dr

Frq(k), if r �= q,

0, otherwise,
(12)

where Dq is any subset of {1, . . . , N} such that N −D◦q ⊆
Dq ⊆ {1, . . . , N}.
The sufficient condition for existence and uniqueness of the

RE of game G rob is given by the following theorem [13]:
Theorem 1: Game G rob has at least one equilibrium for

any set of channel matrices and transmit powers of the users.
Furthermore, the equilibrium is unique if

ρ(Smax) < 1− ρ(E), (13)

where E and S are as defined in (11) and (12) respectively.
This condition for the robust-optimization equilibrium re-

duces to condition (C1) in [6] for the Nash equilibrium when
there is no uncertainty in the system, i.e. when εq = 0 ∀q ∈ Ω.
Further, the set of channel coefficients for which the existence
of a unique equilibrium is guaranteed shrinks as the uncer-
tainty bound increases, since ρ(E) > 0 when any εq > 0.
The robust asynchronous iterative waterfilling algorithm for

computing the RE of game G rob in a distributed fashion is
described in Algorithm 1. The convergence of Algorithm 1 is
guaranteed under the following condition [13]:
Theorem 2: The asynchronous iterative waterfilling algo-

rithm described in Algorithm 1 converges to the unique RE of
game G rob as the number of iterations for which the algorithm
is run, T → ∞ for any set of feasible initial conditions if
condition (13) is satisfied.
The global convergence of the distributed robust iterative

waterfilling algorithm to the unique RE is guaranteed by
Theorem 2 using condition (13) despite game G

rob and the
waterfilling operation RWFq(·) being nonlinear. Further, the
set of channel coefficients for which convergence of the
algorithm is guaranteed reduces as the uncertainty bound
increases.

Algorithm 1 – Robust Iterative Waterfilling Algorithm
Input:
Ω: Set of users in the system
Pq: Set of admissible strategies of user q
Tq: Set of time instants n when the power vector p

(n)
q of

user q is updated
T : Number of iterations for which the algorithm is run
τqr (n): Time of the most recent power allocation of user r
available to user q at time n
RWFq(·): Robust waterfilling operation in (9)
Initialization: n = 0 and p

(0)
q ← any p ∈ Pq, ∀q ∈ Ω

for n = 0 to T do

p
(n+1)
q =

{
RWFq

(
p
(τq(n))
−q

)
, if n ∈ Tq,

p(n)
q , otherwise,

∀q ∈ Ω.

end for

IV. EFFICIENCY AT THE EQUILIBRIUM – TWO-USER CASE
In this section, we analyse the effect of varying uncertainty

bounds on the efficiency of the system. When the system has
only two users, the worst-case interference in each frequency
reduces to

(
Frq(k)+εq

)
pr(k) with q, r = 1, 2 and q �= r. This

implies that the robust waterfilling operation for the two user
case (Q = 2) is simply the standard waterfilling solution with
the worst-case channel coefficients. We restrict our analysis to
the two-user case where both the users have identical noise
variances σ2

q(k) = σ2 ∀k, q across all frequencies, identical
uncertainty bounds ε1 = ε2 = ε and equal total power
constraints

∑N
k=1 p1(k) =

∑N
k=1 p2(k) = 1.

The quantity J(k), defined as

J(k) � −p1(k)p2(k), (14)

is considered as a measure of the extent of partitioning of the
frequency k. It is minimum (J(k) = −1) when both the users
allocate all their total power to the same frequency k and is
maximum (J(k) = 0) when at most one user is occupying
the frequency k. Note that J(k) = 0 ∀k ∈ {1, . . . , N} when
the users adopt an frequency division multiple access (FDMA)
scheme.
The following lemma describes the effect of the uncertainty

bound on the extent of partitioning of the system:
Lemma 1: When the number of frequencies, N → ∞, the

extent of partitioning in every frequency is non-decreasing as
the uncertainty bound of the system increases for any set of
channel matrices, i.e.,

d

dε
J(k) ≥ 0 ∀k ∈ {1, . . . , N} when N →∞ (15)

with equality for frequencies where J(k) = 0, where J(k) is
defined in (14).

Proof: See [18].
From this lemma, we can see that the robust-optimization

equilibrium moves towards greater frequency-space partition-
ing as the uncertainty bound increases when there is a large
number of frequencies in the system. Thus, the RE is moving
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closer to an FDMA solution under increased channel uncer-
tainty. When the FDMA solution is globally optimal [19],
this will lead to an improvement in the performance of the
equilibrium. This is stated in the following theorem:
Theorem 3: As the number of frequencies, N → ∞, the

sum-rate (price of anarchy) at robust-optimization equilibrium
of the system is non-decreasing (non-increasing) as the uncer-
tainty bound increases if, ∀ k ∈ {1, . . . , N},

(F21(k)− ε)(F12(k)− ε) >
1

4
(16)

Proof: See [18].
In frequency-flat systems, all users have equal power alloca-

tion to all frequencies at the equilibrium when (13) is satisfied
[7]. This is not dependent on the uncertainty in the CSI and
thus leads to no change in the extent of partitioning. Thus, the
sum-rate and the price of anarchy are not affected by varying
uncertainty bounds. Also, the modified waterfilling operation
in (9) can be applied as a pricing mechanism to improve the
sum-rate in a system with no uncertainty considering ε is a
design parameter.

V. SIMULATION RESULTS
In this section, simulation results to analyze the impact of

channel uncertainty on the robust-optimization equilibrium is
presented. The simulation parameters are presented in Fig-
ure 1. We study three important aspects, namely the percentage
of convergence, the total information rate observed at the
receivers and the additional number of frequencies with zero
power allocations at the RE when compared to the NE against
the percentage of uncertainty1 δ. We see that the simulation
results follow theoretical results for asymptotic number of
frequencies even when the number of frequencies is as small
as N = 8 frequencies.
In Figure 1a, the sum-rate at the Nash equilibrium is when

the uncertainty is zero. The sum-rate at the Nash equilibrium
(with perfect CSI) is less than the sum-rate at the robust-
optimization equilibrium (with imperfect CSI). Further, this
gap in performance increases as the uncertainty increases. This
is because the users are more cautious about using frequencies
with significant interference, thus reducing the total amount of
interference in the system.
In Figure 1b, the total number of channels occupied per

user at the robust-optimization equilibrium decreases as the
uncertainty bound increases. The users are using smaller
number of frequencies as a result of the better partitioning
of the frequency-space among the users which reduces in-
terference. This leads to the higher sum-rates as observed in
Figure 1a. These simulation results also indicate that schemes
similar to the RE can move closer to Pareto optimality for
rate-maximization games (which is FDMA for interference
constrained systems [19]).
In Figure 1c, we observe that as the uncertainty δ increases,

the average number of iterations for convergence increases.

1(9) and (8) are in terms of absolute uncertainty ε while the simulations
use relative uncertainty δ. They are equivalent to one another.
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(b) Average number of channels occupied per user vs. uncertainty δ.
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Fig. 1: Simulation results for a system with σ = 0.1, Q = 2
users and N = 8 frequencies over 1000 runs. Channel gains
Hrq(k) ∼ CN (0, 1) for r �= q, Hqq(k) ∼ CN (0, 4). Channel
uncertainty model: nominal value Frq(k) = F true

rq (k)(1 +

erq(k)) with erq(k) ∼ U(− δ
2 ,

δ
2 ), δ < 1. The simulations

are limited to channels which satisfy the sufficiency condition
in (13). Note that the zero uncertainty corresponds to the Nash
equilibrium
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This is as expected from [18, Lemma 1], as the modulus of
the block-contraction increases as the uncertainty increases,
which means that the step size of each iteration reduces as
uncertainty increases, thus leading to slower convergence to
the equilibrium.

VI. CONCLUSIONS
In this paper, we have analyzed the efficiency of the

previously introduced robust rate-maximization games for
systems with bounded channel uncertainty. We analyze the
effect of uncertainty on the sum-rate and price of anarchy
of the system for the two-user scenario with large number
of frequencies. We show that the robust-optimization equi-
librium moves towards a frequency division multiple access
(FDMA) solution as uncertainty bound increases and thus
improves sum-rate for interference-constrained systems where
FDMA is Pareto-optimal. This framework can be extended
to MIMO rate-maximization games, cognitive radio and other
non-cooperative games.
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