218 research outputs found

    Remote Identification of Polar Bear Maternal Den Habitat in Northern Alaska

    Get PDF
    Polar bears (Ursus maritimus) give birth in dens of ice and snow to protect their altricial young. During the snow-free season, we visited 25 den sites located previously by radiotelemetry and characterized the den site physiognomy. Seven dens occurred in habitats with minimal relief. Eighteen dens (72%) were in coastal and river banks. These "banks" were identifiable on aerial photographs. We then searched high-resolution aerial photographs (n=3000) for habitats similar to those of the 18 dens. On aerial photos, we mapped 1782 km of bank habitats suitable for denning. Bank habitats comprised 0.18% of our study area between the Colville River and the Tamayariak River in northern Alaska. The final map, which correctly identified 88% of bank denning habitat in this region, will help minimize the potential for disruptions of maternal dens by winter petroleum exploration activities.Les ourses polaires (Ursus maritimus) donnent naissance dans des tanières de glace et de neige afin de protéger leurs petits qui sont nidicoles. Durant la saison libre de neige, on a visité 25 lieux de mise bas repérés précédemment par télémesure et on a caractérisé la structure physionomique de ces lieux. Sept tanières étaient localisées au sein d'habitats au relief très peu prononcé. Dix-huit tanières, soit 72 p. cent, se trouvaient sur des berges côtières ou fluviales. Ces «berges» étaient identifiables sur des clichés aériens. On a ensuite cherché sur des clichés aériens (n=3000) pris à haute résolution des habitats semblables à ceux des 18 tanières. Sur ces clichés, on a cartographié 1782 km d'habitats de berges appropriés à l'établissement de tanières. Les habitats de berges constituaient 0,18 p. cent de notre zone d'étude entre la rivière Colville et la Tamayariak dans l'Alaska septentrional. La carte finalisée, qui identifiait correctement 88 p. cent de l'habitat contenant des berges propres à l'établissement de tanières dans la région, aidera à minimiser le potentiel de perturbation des tanières d' ourses due aux activités de prospection pétrolière hivernales

    Polar Bear Maternal Den Habitat in the Arctic National Wildlife Refuge, Alaska

    Get PDF
    Polar bears (Ursus maritimus) give birth during mid-winter in dens of ice and snow. Denning polar bears subjected to human disturbances may abandon dens before their altricial young can survive the rigors of the Arctic winter. Because the Arctic coastal plain of Alaska is an area of high petroleum potential and contains existing and planned oil field developments, the distribution of polar bear dens on the plain is of interest to land managers. Therefore, as part of a study of denning habitats along the entire Arctic coast of Alaska, we examined high-resolution aerial photographs (n = 1655) of the 7994 km2 coastal plain included in the Arctic National Wildlife Refuge (ANWR) and mapped 3621 km of bank habitat suitable for denning by polar bears. Such habitats were distributed uniformly and comprised 0.29% (23.2 km2) of the coastal plain between the Canning River and the Canadian border. Ground-truth sampling suggested that we had correctly identified 91.5% of bank denning habitats on the ANWR coastal plain. Knowledge of the distribution of these habitats will help facilitate informed management of human activities and minimize disruption of polar bears in maternal dens.Les ours polaires (Ursus maritimus) mettent bas au beau milieu de l’hiver dans des tanières de glace et de neige. Les ours polaires des tanières qui sont la cible de dérangements occasionnés par l’être humain peuvent abandonner leur tanière avant que leurs petits ne soient prêts à survivre les rigueurs de l’hiver de l’Arctique. Puisque la plaine côtière arctique de l’Alaska renferme de grandes possibilités sur le plan pétrolier et comprend des champs pétrolifères mis en valeur ou dont la mise en valeur est planifiée, la répartition des tanières d’ours polaires sur la plaine revêt de l’intérêt chez les gestionnaires des terres. Par conséquent, dans le cadre d’une étude portant sur les habitats des tanières tout le long de la côte arctique de l’Alaska, on a examiné des photographies aériennes de haute résolution (n = 1655) portant sur une superficie de 7994 km2 de la plaine côtière faisant partie de la Réserve faunique nationale de l’Arctique (la Réserve), puis on a cartographié 3621 km d’habitats de berges propices à l’établissement de tanières. Ces habitats étaient répartis de manière uniforme et représentaient 0,29 % (23,2 km2) de la plaine côtière entre la rivière Canning et la frontière canadienne. L’échantillonnage des données de terrain suggérait qu’on avait correctement repéré 91,5 % des habitats de tanières de berges sur la plaine côtière de la Réserve. Le fait de connaître la répartition de ces habitats favorisera une bonne gestion de l’activité humaine et permettra de déranger les ours polaires le moins possible dans leurs tanières maternelles

    Development of On-Shore Behavior Among Polar Bears (Ursus Maritimus) in the Southern Beaufort Sea: Inherited or Learned?

    Get PDF
    Polar bears (Ursus maritimus) are experiencing rapid and substantial changes to their environment due to global climate change. Polar bears of the southern Beaufort Sea (SB) have historically spent most of the year on the sea ice. However, recent reports from Alaska indicate that the proportion of the SB subpopulation observed on-shore during late summer and early fall has increased. Our objective was to investigate whether this on-shore behavior has developed through genetic inheritance, asocial learning, or through social learning. From 2010 to 2013, genetic data were collected from SB polar bears in the fall via hair snags and remote biopsy darting on-shore and in the spring from captures and remote biopsy darting on the sea ice. Bears were categorized as either on-shore or off-shore individuals based on their presence onshore during the fall. Levels of genetic relatedness, first-order relatives, mother–offspring pairs, and father–offspring pairs were determined and compared within and between the two categories: on-shore versus off-shore. Results suggested transmission of on-shore behavior through either genetic inheritance or social learning as there was a higher than expected number of first-order relatives exhibiting on-shore behavior. Genetic relatedness and parentage data analyses were in concurrence with this finding, but further revealed mother–offspring social learning as the primary mechanism responsible for the development of on-shore behavior. Recognizing that on-shore behavior among polar bears was predominantly transmitted via social learning from mothers to their offspring has implications for future management and conservation as sea ice continues to decline

    The Acute Physiological Response of Polar Bears to Helicopter Capture

    Get PDF
    Many wildlife species are live captured, sampled, and released; for polar bears (Ursus maritimus) capture often requires chemical immobilization via helicopter darting. Polar bears reduce their activity for approximately 4 days after capture, likely reflecting stress recovery. To better understand this stress, we quantified polar bear activity (via collar‐mounted accelerometers) and body temperature (via loggers in the body core [Tabd] and periphery [Tper]) during 2–6 months of natural behavior, and during helicopter recapture and immobilization. Recapture induced bouts of peak activity higher than those that occurred during natural behavior for 2 of 5 bears, greater peak Tper for 3 of 6 bears, and greater peak Tabd for 1 of 6 bears. High body temperature (\u3e39.0°C) occurred in Tper for 3 of 6 individuals during recapture and 6 of 6 individuals during natural behavior, and in Tabd for 2 of 6 individuals during recapture and 3 of 6 individuals during natural behavior. Measurements of Tabd and Tper correlated with rectal temperatures measured after immobilization, supporting the use of rectal temperatures for monitoring bear response to capture. Using a larger dataset (n = 66 captures), modeling of blood biochemistry revealed that maximum ambient temperature during recapture was associated with a stress leukogram (7–26% decline in percent lymphocytes, 12–21% increase in percent neutrophils) and maximum duration of helicopter operations had a similar but smaller effect. We conclude that polar bear activity and body temperature during helicopter capture are similar to that which occurs during the most intense events of natural behavior; high body temperature, especially in warm capture conditions, is a key concern; additional study of stress leukograms in polar bears is needed; and additional data collection regarding capture operations would be useful

    Growth hormone (GH)-independent dimerization of GH receptor by a leucine zipper results in constitutive activation*

    Get PDF
    Growth hormone initiates signaling by inducing homodimerization of two GH receptors. Here, we have sought to determine whether constitutively active receptor can be created in the absence of the extracellular domain by substituting it with high affinity leucine zippers to create dimers of the growth hormone receptor (GHR) signaling domain. The entire extracellular domain of the GHR was replaced by the hemagglutinin-tagged zipper sequence of either the c-Fos or c-Jun transcription factor (termed Fos-GHR and Jun-GHR, respectively). Transient transfection of Fos-GHR or Jun-GHR resulted in activation of the serine protease inhibitor 2.1 promoter in Chinese hamster ovary-K1 cells to a level equal to that achieved by fully activated wild type GHR. Furthermore, stable expression of Jun-GHR alone or Fos-GHR and Jun-GHR together in the interleukin 3-dependent BaF-B03 cell line resulted in cell proliferation after interleukin 3 withdrawal at a rate equal to maximally stimulated wild type GHR-expressing cells. Activation of STAT 5b was also observed in Fos-Jun-GHR-expressing cells at a level equal to that in chronically GH-treated GHR-expressing cells. Thus, forced dimerization of the transmembrane and cytoplasmic domains of the GHR in the absence of the extracellular domain can lead to the constitutive activation of known GH signaling end points, supporting the view that proximity of Janus kinase 2 (JAK2) kinases is the essential element in signaling. Such constitutively active GH receptors may have particular utility for transgenic livestock applications

    Climate change threatens polar bear populations : a stochastic demographic analysis

    Get PDF
    Author Posting. © Ecological Society of America, 2010. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 91 (2010): 2883–2897, doi:10.1890/09-1641.1.The polar bear (Ursus maritimus) depends on sea ice for feeding, breeding, and movement. Significant reductions in Arctic sea ice are forecast to continue because of climate warming. We evaluated the impacts of climate change on polar bears in the southern Beaufort Sea by means of a demographic analysis, combining deterministic, stochastic, environment-dependent matrix population models with forecasts of future sea ice conditions from IPCC general circulation models (GCMs). The matrix population models classified individuals by age and breeding status; mothers and dependent cubs were treated as units. Parameter estimates were obtained from a capture–recapture study conducted from 2001 to 2006. Candidate statistical models allowed vital rates to vary with time and as functions of a sea ice covariate. Model averaging was used to produce the vital rate estimates, and a parametric bootstrap procedure was used to quantify model selection and parameter estimation uncertainty. Deterministic models projected population growth in years with more extensive ice coverage (2001–2003) and population decline in years with less ice coverage (2004–2005). LTRE (life table response experiment) analysis showed that the reduction in λ in years with low sea ice was due primarily to reduced adult female survival, and secondarily to reduced breeding. A stochastic model with two environmental states, good and poor sea ice conditions, projected a declining stochastic growth rate, log λs, as the frequency of poor ice years increased. The observed frequency of poor ice years since 1979 would imply log λs ≈ − 0.01, which agrees with available (albeit crude) observations of population size. The stochastic model was linked to a set of 10 GCMs compiled by the IPCC; the models were chosen for their ability to reproduce historical observations of sea ice and were forced with “business as usual” (A1B) greenhouse gas emissions. The resulting stochastic population projections showed drastic declines in the polar bear population by the end of the 21st century. These projections were instrumental in the decision to list the polar bear as a threatened species under the U.S. Endangered Species Act.We acknowledge primary funding for model development and analysis from the U.S. Geological Survey and additional funding from the National Science Foundation (DEB-0343820 and DEB-0816514), NOAA, the Ocean Life Institute and the Arctic Research Initiative at WHOI, and the Institute of Arctic Biology at the University of Alaska–Fairbanks. Funding for the capture–recapture effort in 2001–2006 was provided by the U.S. Geological Survey, the Canadian Wildlife Service, the Department of Environment and Natural Resources of the Government of the Northwest Territories, and the Polar Continental Shelf Project, Ottawa, Canada
    corecore