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Abstract

Many wildlife species are live captured, sampled, and released;

for polar bears (Ursus maritimus) capture often requires

chemical immobilization via helicopter darting. Polar bears

reduce their activity for approximately 4 days after capture,

likely reflecting stress recovery. To better understand this

stress, we quantified polar bear activity (via collar‐mounted

accelerometers) and body temperature (via loggers in the body

core [Tabd] and periphery [Tper]) during 2–6 months of natural

behavior, and during helicopter recapture and immobilization.

Recapture induced bouts of peak activity higher than those

that occurred during natural behavior for 2 of 5 bears, greater

peak Tper for 3 of 6 bears, and greater peak Tabd for 1 of 6

bears. High body temperature (>39.0°C) occurred in Tper for 3

of 6 individuals during recapture and 6 of 6 individuals during

natural behavior, and in Tabd for 2 of 6 individuals during

recapture and 3 of 6 individuals during natural behavior.

Measurements of Tabd and Tper correlated with rectal

temperatures measured after immobilization, supporting the

use of rectal temperatures for monitoring bear response to

capture. Using a larger dataset (n = 66 captures), modeling of

blood biochemistry revealed that maximum ambient tempera-

ture during recapture was associated with a stress leukogram
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(7–26% decline in percent lymphocytes, 12–21% increase in

percent neutrophils) and maximum duration of helicopter

operations had a similar but smaller effect. We conclude that

polar bear activity and body temperature during helicopter

capture are similar to that which occurs during the most

intense events of natural behavior; high body temperature,

especially in warm capture conditions, is a key concern;

additional study of stress leukograms in polar bears is needed;

and additional data collection regarding capture operations

would be useful.

K E YWORD S

blood biochemistry, body temperature, leukograms, polar bears, white
blood cells, wildlife capture

Biologists have an ethical and professional obligation to minimize the negative consequences of their research

methods on the organisms that they study (Costello et al. 2016, Field et al. 2019). This philosophy has fostered

development of non‐invasive sampling techniques for free‐ranging wildlife (Pauli et al. 2010, Mori 2019); however,

some types of data can only be obtained by the physical capture of animals. Physical capture creates unique risks

for large‐bodied animals that may be pursued before capture (e.g., by helicopter) such as moose (Alces alces), brown

bears (Ursus arctos), and polar bears (Ursus maritimus; Arnemo et al. 2006). Polar bears (considered vulnerable by the

International Union for Conservation of Nature Red List [Regehr et al. 2016], and threatened to become

endangered by the United States [U.S. Fish and Wildlife Service 2008]) are captured for resolving conflict with

humans and for collecting important data that would otherwise be inaccessible (Kearney 1989). For example,

measurements of body composition and mass provide key predictors of fitness (Rode et al. 2020), blood sampling

reveals changes across time and space in the organismal functions (e.g., in nutritional physiology, immune system

activity) that drive population trends (Cherry et al. 2009, Whiteman et al. 2018), and markers (e.g., lip tattoos) and

tracking devices (e.g., radio‐collars) enable population estimates and assessments of habitat use (Amstrup et al.

2004, Durner et al. 2009, Bromaghin et al. 2015). The data provided by these methods are especially valuable in the

current era of rapid sea ice loss resulting from anthropogenic climate warming (Derocher et al. 2013).

The choice of field methods in polar bear research is based on overlapping and distinct perspectives from

northern Indigenous communities, governmental entities, academic institutions, conservation organizations, and

others (Wong et al. 2017). To provide information for this choice, we focus on understanding the behavioral and

physiological effects of helicopter darting on polar bears, which is often the only feasible method of chemical

immobilization in their remote sea ice and tundra habitats (Figure 1). The sequence of operations during helicopter

darting typically includes 1) initial sighting of a bear, at which time it may or may not show a behavioral response to

the helicopter; 2) helicopter retreat to reduce disturbance during safety assessment and dart preparation, which

typically lasts several minutes; 3) if needed, herding of the animal towards safe habitat for darting (e.g., away from

open water); 4) darting run(s) in which the helicopter flies within 10m of the bear; 5) after a successful darting,

helicopter retreat to reduce disturbance while keeping the animal in sight to observe that it exhibits ataxia then lays

down; 6) helicopter landing and bear health assessment (e.g., monitoring respiratory rate and rectal temperature);

and 7) bear handling, during which samples are collected and tracking devices may be affixed. Biopsy darting

(Pagano et al. 2014), for the purpose of collecting tissue samples, also involves low‐elevation flight in pursuit of

bears. Biopsy darting involves only steps 1−4 and there is less need to herd bears into safer terrain (step 3) because

they do not undergo immobilization.
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Mortalities from helicopter capture are rare. Rode et al. (2014), in a study of 2,517 polar bear captures,

calculated a mortality rate of 0.1%, similar to brown bears (U. arctos) and other large mammals (Arnemo et al. 2006,

Latham et al. 2019, Scasta 2020). Effects other than direct mortality can also be important yet are difficult to assess.

A review of decades of polar bear field work on the Southern Beaufort Sea subpopulation reported no long‐term

effects of helicopter capture on body condition, reproduction, or cub survival (Rode et al. 2014). Earlier reports

likewise reported no evidence of long‐term effects from helicopter capture on cub and adult body mass (Amstrup

1993, Messier 2000). Two studies of theWestern Hudson Bay subpopulation, however, noted small but significant

trends of lighter body mass for adult females (Ramsay and Stirling 1986) or their cubs (Lunn et al. 2004) if the

females had previously experienced helicopter capture.

After helicopter capture, polar bears return to their typical movement rates in a mean of 4 days (n = 74 bears,

Thiemann et al. 2013a; n = 55 bears, Rode et al. 2014). This response likely reflects recovery from immobilization

drugs, capture stress, and elevated body temperature (Best 1982, Breed et al. 2019). Polar bears typically regulate

their core body temperature at 36.6–37.3°C, and they struggle to dissipate body heat during intense activity (Best

1982, Whiteman et al. 2015). In a captive study (Best 1982), polar bears maintained normothermia when running on

a treadmill at speeds up to about twice their typical movement rate (Amstrup et al. 2000). At higher speeds, their

body temperature began climbing and did not plateau until their activity ceased; this occurred even with a steep and

favorable thermal gradient (e.g., at an ambient temperature of −35°C). In addition, the most commonly used

immobilization drug, Telazol (tiletamine hydrochloride and zolazepam hydrochloride), may increase the risk of

elevated body temperature (Stirling et al. 1989, Kreeger and Arnemo 2018).

Hyperthermia occurs when body temperature remains above a normal upper threshold, which can vary among

animals because of differing temperature tolerances (Hill et al. 2008). Hyperthermia, along with capture stress, can

cause complex changes in blood biochemistry. Liver damage may occur, indicated by elevated plasma levels of the

enzyme alanine aminotransferase (ALT; Diehl et al. 2000). Impaired liver and kidney function, along with

dehydration, can increase plasma sodium and potassium (Hashim 2010). Plasma glutamic acid may rise as a result of

activation of the sympathetic nervous system (Jacob et al. 1989, Zlotnik et al. 2010). The overall stress response,

coordinated by the autonomic nervous system and the hypothalamic‐pituitary‐adrenal axis, leads to increased

plasma catecholamines, cortisol, and glucose (Hill et al. 2008). Stress can also cause a rapid increase in the white

blood cell count (WBC) and in the percentage of neutrophils, and a concomitant decrease in the percentage of

lymphocytes, a pattern referred to as a stress leukogram (Cattet et al. 2003).

The acute physiological responses of polar bears to helicopter capture have not been characterized. Our

objective was to compare capture responses to natural behavior that potentially includes stressful events of intense

F IGURE 1 Helicopter darting of a polar bear on sea ice, southern Beaufort Sea, 2010. Photo by Mike Lockhart.
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activity such as prey capture or conflict with conspecifics. We used data from free‐ranging polar bears in the

Southern Beaufort Sea subpopulation that were equipped with high‐resolution activity sensors, body temperature

loggers, and Global Positioning System (GPS) units. We tested the prediction that activity counts and body

temperatures would reach higher levels during helicopter recapture than during natural behavior. We also tested

the prediction that rectal temperature, commonly used to monitor bear health during immobilization, would be

similar to temperatures recorded by the implanted loggers. In addition, using a larger dataset that also included

polar bears without loggers, we tested the prediction that blood biochemical markers of elevated body

temperatures and stress would be influenced by the duration of helicopter operations, ambient temperature, and

dose of the immobilization drug.

STUDY AREA

We captured polar bears during April–May (spring), August (summer), or October (autumn), in 2008 and 2009, in

terrestrial habitat along the northern coast of Alaska, USA, between the city of Utqiagvik and the Alaska‐Canada

border, on sea ice in the southern portion of the Beaufort Sea, and on sea ice up to 700 km offshore with the aid of

an icebreaker in October 2009. The terrestrial environment is a flat coastal plain, dominated by shrub tundra

(Barbour and Billings 2000), that lies within the North Slope Borough. Dominant fauna in the region include polar

bears and ringed seals (Pusa hispida). Sea ice in this region melts and retreats north during June–October but is

mostly contiguous with the coast during other months, includes flat pans and large ridges, and generally drifts

clockwise following the Beaufort Gyre ocean current (Kwok et al. 2013).

METHODS

We conducted captures via helicopter darting using a Bell‐206 (Bell, Fort Worth, TX, USA) or Airbus AS350 (Airbus,

Leiden, Netherlands). We located animals by following footprints in the snow or mud or by following a very high

frequency signal for individuals wearing radio‐collars. Darts contained Telazol (Warner‐Lamber, NJ, USA) at doses

estimated at 4–10mg/kg based on visual assessments of body mass (Stirling et al. 1989). During most captures, a

second helicopter carrying additional researchers and equipment was within sight or sound of the target bear. We

calculated the duration of helicopter operations as the time elapsed between the minute of the initial sighting of the

bear and the minute we observed it lying down. These events, recorded on standardized data sheets, included the

period during which the bear may have been running away from the helicopter, although such behavior could not

be assumed. Bears typically run only during the actual darting, which is often a short component of the helicopter

operations. We measured rectal temperature of immobilized bears as soon as possible after they lay down

(usually <10min) with a digital thermometer (Syrvet, Waukee, IA, USA). We weighed bears by suspending them in a

net using an electronic load cell and an aluminum tripod. We determined the age at the bear's first capture based on

counts of cementum annuli from an extracted vestigial premolar (Calvert and Ramsay 1998), except if we first

captured the bear as a dependent cub in which case we aged it based on body size and dentition.

At each capture, we collected blood from the femoral artery (occasionally the vein) in plain (red‐top) and

ethylenediaminetetraacetic acid (EDTA; anticoagulant; purple‐top) vacutainers® (BD, Franklin Lakes, NJ, USA).

Within 12 hours we used a hematology diagnostic analyzer (HM5, Abaxis, Union City, CA, USA) to analyze EDTA

whole blood for WBC and percentage of neutrophils and lymphocytes. We also centrifuged whole blood from plain

vacutainers® (2,000 relative centrifugal force for 10min), separating serum from red blood cells, and measured

serum glucose, ALT, sodium, and potassium with chemistry panels (500‐7123; Abaxis) and a veterinary blood

analyzer (VS2 VetScan; Abaxis; Whiteman et al. 2018). We then froze serum at −20 to −40°C. To measure serum

cortisol, we thawed samples and used an enzyme‐linked immunosorbent assay (EA65, Oxford Biomedical Research,
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MI, USA; Whiteman et al. 2018). To measure serum glutamic acid, the thawed samples were analyzed with ion‐

exchange liquid chromatography by the University of Missouri Experiment Station Chemical Laboratories

(Columbia, MO, USA; Le Boucher et al. 1997, François 2002).

We fitted 14 bears with accelerometers, temperature loggers, or both, as part of a larger ecophysiological study

(Durner et al. 2011; Whiteman et al. 2015, 2017, 2018, 2019). Accelerometers (Actiwatch; Mini‐Mitter Respironics,

Bend, OR, USA), attached to a GPS radio‐collar, were sensitive to motion in all planes and recorded a unitless count

every 2minutes, reflecting acceleration intensity (Van Oort et al. 2004). We recorded body temperature using

loggers surgically implanted in the rump (Tper; peripheral temperature) or in the abdomen (Tabd). We recorded Tper

withTidbit V2 loggers (every 5 or 10min, resolution 0.02°C; Onset Computer Corporation, MA, USA) and recorded

Tabd with iButton loggers (DS1922L, hourly measurements, resolution 0.0625°C; Maxim Integrated, CA, USA). For

Tper, we sutured the logger to the surface of the gluteus maximus muscle, beneath the subcutaneous adipose tissue,

slightly ventral to the base of the tail; for details see Durner et al. (2011) and Whiteman et al. (2015, 2017). For Tabd,

we sutured the logger inside the abdominal cavity, adjacent to the peritoneum, on the ventral midline and slightly

superior of the umbilicus; for details see Whiteman et al. (2015).

Data analysis

Activity and body temperature from sensors

We analyzed data separately from each sensor deployed on each bear. We first censored the data recorded during

the 5 days immediately after the initial capture to exclude the initiation of the healing process and the post‐capture

period of reduced activity and movement (Thiemann et al. 2013, Rode et al. 2014). In the remaining data, we

identified the highest values of activity count, Tper, and Tabd that were recorded during natural behavior after the

initial capture (a period lasting 2–6 months), and helicopter operations and animal handling upon recapture. Then,

for the highest value that was recorded during helicopter operations and handling, we calculated its percentile rank

among all measurements for that bear and the percent of the overall maximum value that it represented. For

example, for bear 20586, there were 40,909 measurements of activity, recorded every 2minutes during

August–October 2008, and their values ranged from 0 to 10,851 (unitless activity counts). The highest activity

value recorded during helicopter operations and handling was 7,047, which was in the 99th percentile of all 40,909

measurements and was 65% of the overall maximum value (i.e., 10,851).

We also calculated the number and duration of all events of Tper or Tabd > 39.0°C. In a previous study, 39.0°C

was the highest core and skin temperature measured in resting, captive polar bears in ambient environmental

conditions at a site in their natural range (Best 1982). The Tabd and Tper measurements were instantaneous;

however, for calculating duration of elevated body temperature, we defined a single measurement of Tabd > 39.0°C

as 1 hour becauseTabd measurements were hourly, and defined a single measurement of Tper > 39.0°C as either 5 or

10minutes, depending on the frequency of sensor measurement. In some occurrences, several hours of

consecutive measurements of Tper > 39.0°C contained 1–2 measurements ≤39.0°C; these 1–2 measurements

represented ≤10minutes and we ignored these values when calculating duration of elevated temperature. Lastly,

we applied linear regression to Tper or Tabd versus rectal temperature recorded during immobilization.

Blood biochemistry

For each blood biochemistry variable, we constructed 7 linear mixed‐effects models (models A–G). All models

included the random predictor bear identification (ID) to account for repeated sampling of some individuals and the

fixed predictors sex and group. Group was 1 of 6 combinations of capture season, year, and habitat feature
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(Apr–May 2009 ice, Aug 2008 shore, Aug 2009 shore, Oct 2008 shore, Oct 2009 shore, Oct 2009 ice). Including

group accounted for the potentially confounding differences in blood biochemistry that occur between seasons,

years, and habitat features (Whiteman et al. 2018, 2019). Models also included combinations of the fixed predictors

duration, temperature, and dose, and the interaction term duration × temperature. Duration was the time elapsed

during helicopter operations between steps 1 and 5, as described above. Dose was the amount of Telazol (mg/kg

body mass) used to immobilize the bear. Temperature was an interpolated value. We obtained 2‐m above‐ground

air temperature estimates from the European Centre for Medium‐Range Weather Forecasts ERA5 global

atmospheric reanalysis (Hersbach et al. 2020) using the Env‐Data tool (Dodge et al. 2013). We prescribed the Env‐

Data tool to interpolate temperature values at the location and time of each polar bear capture (scale of

0.25° × 0.25°) by applying spatial and temporal inverse‐distance weighting to the surrounding hourly, 31‐km

resolution gridded ERA5 outputs. Lastly, we considered the interaction term duration × temperature because

elevated body temperatures may be more likely during extended helicopter operations in warmer ambient

conditions.

We constructed linear mixed‐effects models A–G using the R package lmer and evaluated their fit with residual

plots, qq plots, and the D'Agostino omnibus test of residual normality. If residuals departed from normality, we log‐

transformed the response variable and evaluated the impact of potential outliers via residual plots. We then used

the R package MuMIn (Bartoń 2021) to estimate model‐averaged coefficients for each predictor, weighted by

Akaike's Information Criterion scores adjusted for small sample sizes (AICc). We considered the full averages, which

sets a coefficient to zero if the predictor is not present in a model. This approach reduces biasing a coefficient away

from zero when it is absent from models with substantial AICc weights (Burnham and Anderson 2002).

We used model‐averaged coefficient estimates to predict values of biochemical variables for a polar bear under

3 different scenarios to assess the significance of the predictors duration, temperature, and dose. These 3 scenarios

assumed that the bear was a female captured in spring 2009, which was the largest group in our data (n = 18

captures). In each of the 3 scenarios, we held 2 of the 3 predictors at their mean values and set the third predictor at

its minimum value and then at its maximum value. If the resulting change in a biochemistry variable was greater than

half of the standard deviation of the measurements for that variable, we considered the influence of the changed

predictor to be significant. This conservative approach focused on effect size and reduced the probability of a type

II error (i.e., missing a significant effect), which is appropriate when analyzing potential negative consequences of

capture. In addition to modeling the 3 scenarios described above, we used model‐averaged coefficients to estimate

optimal helicopter operations as the longest duration, warmest temperature, and highest dose that would not result

in any significant changes in biochemical variables.

RESULTS

Activity and body temperature during helicopter capture

We collected activity and body temperature data for 13 female and 1 male independent subadults or adults (age

[x̄ ± SD] = 9 ± 6 yr; range = 2–22 yr; Figure 2; Figures S1–S3, available in Supporting Information). Sample sizes were

unequal across sensor types because logistics prevented deploying all sensors on all bears and because some

sensors failed during deployment. For 2 of 5 individuals, peak activity occurred during helicopter recapture

operations, rather than during natural behavior (Table 1; Figure 2). For these 2 individuals, the helicopter operations

had short durations (6 min and 16min) relative to the other 3 recaptures. For 3 of 6 individuals with Tper

measurements, peak Tper occurred during recapture rather than natural behavior (Table 1; Figure 2). These 3

individuals were also the only bears to exhibit body temperatures >39.0°C during recapture (Table 2). In contrast, all

6 bears exhibited Tper > 39.0°C at least once during natural behavior. For 1 of the 6 individuals with Tabd

measurements, peak Tabd occurred during recapture rather than natural behavior (Table 1; Figure 2). This individual
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F IGURE 2 Six examples of activity count and body temperature (peripheral [Tper], abdomen [Tabd]) in free‐
ranging polar bears (bear identification [ID] provided) in the southern Beaufort Sea, 2008–2009. We measured
these variables during several months of natural behavior and during helicopter recapture and handling. For the 3
bears in the left column (A–C), peak values of activity count, Tper, and Tabd occurred during natural behavior (gray
lines); for comparison, values during helicopter recapture and handling are also shown (black lines). For the 3 bears
in the right column (D–F), peak values of activity count, Tper, and Tabd occurred during helicopter recapture and
handling (black lines); for comparison, highest values during natural behavior are also shown (gray lines). Bars on the
x‐axes refer to the data recorded during helicopter recapture: the black bars represent the helicopter operations
(from initial sighting of the bear until the minute we observed it to be down) and the gray bars represent the
handling time of the immobilized bear until we removed the sensor. We estimated the alignment of these events
because internal clocks on the sensors drifted by several minutes during deployment.
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experienced a helicopter operation that was similar to the other individuals, and was 1 of 2 bears to exhibit

Tabd > 39.0°C during recapture (Table 2). Three bears exhibited Tabd > 39.0°C during natural behavior. WhenTper or

Tabd exceeded 39.0°C during recapture, temperature declined after the bear became inactive and immobilized

(Figures 3 and 2E, F).

Measurements of Tabd and Tper closely correlated with rectal temperatures, differing from the latter by ≤1.0°C

(Figure 4). On average, we measured rectal temperature within 13minutes of the associated Tabd recording

(range = 1–30min, n = 6) and within 2minutes of the associated Tper recording (range = 0–3min, n = 4), although this

alignment included unknown imprecision because the clock within Tabd and Tper loggers drifted by several minutes

during deployment.

TABLE 1 Summary of activity counts and body temperature measurements of free‐ranging, female polar bears
(1 exception: bear 20947 was male) in the southern Beaufort Sea, 2008–2009. Activity counts (Act), a unitless
index of acceleration, were recorded by a collar‐borne sensor. Peripheral (Tper) and abdominal (Tabd) temperatures
were recorded by implanted loggers. Recordings included several months of natural behavior (period); a brief
period of helicopter operations for darting and recapture (described here by duration, ambient temp, and dose of
immobilization drug); and a brief period of handling for sensor retrieval. Captures were on shore unless otherwise
noted. Asterisks indicate identifications (IDs) of bears for which peak values of activity count, Tper, or Tabd occurred
during helicopter operations or handling. For bears without asterisks, peak values of activity count, Tper, or Tabd
occurred during natural behavior.

During recapture

Recordings by sensors
deployed on bear

Highest sensor
value (relative to all
values)

Characteristics of helicopter
operation

Bear ID Age (yr) Period Type
Frequency
(min) n

%
of peak

Percentile
rank

Duration
(min)

Temp
(°C)

Dose
(mg/kg)

20586 8 Aug–Oct Act 2 40,909 65 99 22 −9 12.4

20966 10 Aug–Oct 2 50,306 78 99 32 −11 7.6

32282 6 Aug–Oct 2 32,374 78 99 39 −3 11.7

32255* 4 Aug–Oct 2 30,174 100 100 6 −6 10.7

32606* 11 Aug–Oct 2 47,540 100 100 16 −13 7.1

32282 6 Aug–Oct Tper 5 12,970 92 99 39 −3 11.7

21024 6 Apr–Oct 10 23,022 93 97 30a −5 15.1

6810 19 Aug–Oct 5 14,059 93 98 22 −9 6.9

20586* 8 Aug–Oct 5 16,389 100 100 22 −9 12.4

20741* 7 Aug–Oct 5 18,142 100 100 10 −16 11.3

32255* 4 Aug–Oct 5 12,080 100 100 6 −6 10.7

21045 8 May–Oct Tabd 60 3,382 42 92 81a −1 20.1

20947 5 Aug–Oct 60 1,358 82 63 11 −2 4.2

21150 2 Aug–Oct 60 1,533 87 55 26 −5 12.5

20414 12 Aug–Oct 60 1,461 87 98 12 1 5.6

20562 22 Aug–Oct 60 1,413 99 99 23 −4 6.4

20764* 9 May–Oct 60 3,601 100 100 24a −10 9.5

aHelicopter recapture operations occurred 50–700 km offshore on sea ice.

8 of 19 | WHITEMAN ET AL.



Blood biochemistry in relation to helicopter operations

We analyzed polar bear blood samples collected from 66 capture events. These events included 50 unique polar

bears (35 females, 15 males); 36 individuals were captured once and 14 were captured multiple times. Capture

events occurred in April–May 2009 (n = 30), August 2008 (n = 9), August 2009 (n = 6), October 2008 (n = 9), and

October 2009 (n = 12). Mean age at capture was 11 ± 4 years (SD; range = 5–22 yr). The mean duration of

helicopter operations for these captures was 19 ± 9minutes (range = 7–45min). Mean ambient temperature during

captures was −2.8 ± 5.8°C (−16–14°C), and we administered a mean dose of Telazol of 7.6 ± 2.3 mg/kg

(4.1–15.1mg/kg).

Percent lymphocytes declined with longer duration and warmer temperature but showed no response to dose

(Table 3). These results reflect whether the predicted values of percent lymphocytes differed by ≥4.5% when based

on minimum and maximum values of duration, temperature, or dose, in a mixed‐effects model using model‐

averaged coefficients (Table S1, available in Supporting Information). We defined the threshold (4.5%) as half of the

standard deviation of observed percent lymphocyte values. The models that included predictors of duration and

temperature (E, F, G; Table 4) had the highest AICc weights (sum = 0.87). The influences of bear ID, group, and sex

on percent lymphocytes and all biochemical variables were variable (Table S1). Residuals in models B, E, F, and G

departed from normality (P < 0.05, D'Agostino omnibus test) although residual plots did not show strong patterns.

We identified 2 potential outliers; their removal improved normality but had no effect on the results. For all blood

biochemical variables, including percent lymphocytes, results include all data (i.e., no outlier removal).

TABLE 2 Maximum body temperatures, and summaries of occurrences of body temperatures >39.0°C, in 11
free‐ranging female polar bears and 1 male (identification [ID] 20947) in the southern Beaufort Sea, 2008–2009.
Peripheral (Tper) and abdominal (Tabd) temperatures were recorded by implanted loggers. Recordings included
several months of natural behavior, a brief period of helicopter operations for darting and recapture, and a brief
period of handling for sensor retrieval.

Tper or Tabd > 39.0°C

During recapture During natural behavior

Bear ID Occurrences Length (min) Max. temp (°C) Occurrences Length (min) Max. temp (°C)

Tper

32282 0 38.6 5 5–200 39.9

21024 0 38.4 12 10–70 39.4

6810 0 38.6 3 5–260 39.5

20586 1 25 39.7 1 65 39.6

20741 1 55 40.8 7 10–130 40.0

32255 2 20–40 40.1 1 20 39.4

Tabd

20414 0 37.6 0 38.3

20562 1 60 39.8 1 240 39.8

20764 1 60 39.0 0 38.8

20947 0 37.0 0 38.6

21045 0 37.5 3 60 39.9

21150 0 37.2 3 60–120 39.7
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Percent neutrophils increased with longer duration and warmer temperature, and did not respond to changes

in dose (Table 3). The percent neutrophil model that included these 2 predictors (model E) had the highest AICc

weight (0.57; Table 4). Residuals in percent neutrophil model D departed from normality (P = 0.01, D'Agostino

omnibus test) although they passed an alternative test (Cramer‐von Mises; P = 0.34) and residual plots did not

show a strong pattern. Sodium declined with longer duration, increased with warmer temperature, and did not

respond to changes in dose (Table 3). The sodium model that included duration and temperature as predictors (E)

accounted for the highest AICc weight (0.41; Table 4). Residuals in sodium models A–D departed from normality
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F IGURE 3 Occurrences of polar bear body temperatures >39.0°C during helicopter recapture and handling,
southern Beaufort Sea, 2008–2009, as measured by abdominal (A; Tabd) and peripheral loggers (B–C; Tper). On the
x‐axes, black bars represent helicopter operations from initial sighting of the bear to the minute we observed it to
be down, and gray bars represent the subsequent handling time of the immobilized bear until we removed the
sensor. We estimated the alignment of these events because internal clocks on the temperature loggers drifted by
several minutes during deployment. ID = identification.
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(P < 0.05, D'Agostino omnibus test) although residual plots did not show strong patterns. We identified 2 potential

outliers in sodium models; removal of these potential outliers improved normality, did not change the negative

influence of duration, and eliminated the positive influence of temperature. For models of cortisol, glucose, WBC,

potassium, ALT, and glutamic acid, all changes resulting from altering predictors between minimum and maximum

values were not significant (Table 3) and the highest AICc weight occurred for model A, which lacked the predictors of

duration, temperature, and dose (Table 4).

Based on model‐averaged coefficients (Table S1), the optimal helicopter operations for capturing a female in

spring 2009 included duration ≤23minutes and temperature ≤ −14°C. Because dose did not influence any

biochemical variables, we did not consider it here. Captures below these thresholds did not cause significant

changes in biochemical variables when compared to captures modeled with the shortest duration (7 min) and

coldest temperature (−16°C). Notably, there was only a single capture at −16°C; after removing this capture and

re‐running models, the optimal temperature threshold was −10°C. Applying the same modeling process but

assuming capture of a male instead of a female resulted in an optimal duration ≤21minutes and

temperature ≤ −12°C.
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F IGURE 4 Linear regressions using polar bear rectal temperature, measured during immobilization after
helicopter capture in the southern Beaufort, 2008–2009, to predict A) abdominal (Tabd) and B) peripheral (Tper) body
temperatures. In A each gray circle is the mean of 2 Tabd measurements (rather than single measurements) that
were recorded 30 minutes before and after the rectal temperature measurement.
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DISCUSSION

We found only limited support for our prediction that helicopter recapture, rather than natural behavior, would

induce higher peak values in activity and body temperature in polar bears. Helicopter recapture, rather than natural

behavior, accounted for higher peak activity in 2 of 5 instrumented bears, higher peak Tper in 3 of 6, and higher peak

Tabd in 1 of 6. These results indicate that the very high levels of activity and body temperature during helicopter

recapture are often within range of the most intense natural events experienced by free‐ranging bears. In addition,

the ambient temperature during recapture had a stronger influence on blood biochemical variables than the

duration of helicopter operations. The dose of immobilization drugs was not related to any change in biochemistry.

The most consistent responses to capture conditions were declines in percent lymphocytes and increases in percent

neutrophils, which represents a stress leukogram, similar to capture of brown bears (Cattet et al. 2003). Overall, our

results reinforce that elevated body temperatures are a risk during captures and identify stress leukograms as a

potential metric of the effects of capture, meriting further study.

Activity and body temperature during helicopter capture

Polar bears often moved away from the helicopter by running, jumping or climbing over obstacles, swimming, and

diving. Our data indicate that these actions were similar to the most intense events of natural behavior, potentially

including prey capture (Stirling 1974, Iles et al. 2013), conflict with conspecifics (Miller et al. 2015), or traversing

rough sea ice and rugged terrestrial terrain. Our datasets of natural behavior did not cover May–June, the most

TABLE 3 Measured values of blood biochemical variables for adult female polar bears sampled in spring 2009
in the southern Beaufort Sea, and modeled values for this group under different capture scenarios. Scenarios were
based on 3 predictors: duration of helicopter operations, ambient temperature conditions during capture, and
dose of immobilization drug. In each scenario, we held 2 predictors constant while we varied the third predictor
from the minimum to the maximum observed value. The resulting change in the biochemical variable was
significant if the difference between scenarios was greater than half of the standard deviation of the mean of the
measured values (indicated with an asterisk).

Modeled values under different scenarios

Measured values Duration of helicopter operations Temp Dose of drug

Variable (units) x̄ (SD) 7min 45min −16°C 14°C 4.1mg/kg 15.1 mg/kg

Lymphocytes (%) 19 (9) 17* 10* 31* 5* 15 14

Neutrophils (%) 70 (10) 70* 82* 65* 86* 73 76

Sodium (mmol/L) 139 (3) 140* 138* 138* 141* 139 139

Cortisol (ng/ml) 52 (29) 45 46 43 50 45 47

Glucose (mg/dl) 126 (20) 132 133 136 128 133 132

WBC (103/μl)a 7.4 (2.3) 6.1 6.2 5.9 6.4 6.2 6.0

Potassium (mmol/L) 4.3 (0.2) 4.4 4.3 4.3 4.3 4.3 4.4

ALT (units/L)b 40 (22) 38 42 40 39 40 40

GA (μg/ml)c 23 (15) 20 21 20 20 21 18

aWhite blood cells.
bAlanine aminotransferase.
cGlutamic acid.
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active period of the year, which includes peak hunting opportunities, courtship, and mating (Ferguson et al. 2001,

Laidre et al. 2012, Whiteman et al. 2015). The lack of data in these months could bias our interpretation of natural

behaviors towards lower activity. Although the probability of intense activity during natural behavior is highest

during May–June, it remains possible at any point during the year outside of the time spent in maternal dens.

Body temperatures >39.0°C occurred during some recaptures, emphasizing the importance of monitoring body

temperature during immobilization. These occurrences were generally similar in peak temperature and duration to

those that occurred during natural behavior, and body temperatures gradually declined during immobilization. Our

results support that rectal temperature, commonly measured in the field, provides a reliable proxy for bothTabd and

Tper. Similarly, in humans, rectal temperature closely tracked rising core body temperature during intense exercise

(Teunissen et al. 2012). One polar bear also exhibited a rectal temperature and Tabd < 36°C. The cause of this mild

hypothermia is unknown, although it is possible that the animal swam in cold water shortly before or during capture.

Although the immobilization drug Telazol can interfere with thermoregulation, the potential risk is expected to be

hyperthermia rather than hypothermia; in addition, Telazol typically does not impair respiration rate and thus would

not influence respiratory heat loss (Stirling et al. 1989, Kreeger and Arnemo 2018).

Only 1 polar bear exhibited peak Tabd during helicopter recapture. We may have missed brief temperature

spikes because we only measured Tabd hourly, although such non‐detection of substantial spikes is unlikely for 2

reasons. First, in a previous study of captive polar bears, although Tabd increased quickly after the initiation of

intense exercise, Tabd required 70–190minutes to reach new, elevated equilibrium values (Best 1982). This time lag,

due to thermal inertia, suggests that an induced rise in Tabd would have been apparent even in our Tabd

measurements recorded up to an hour after the initiation of helicopter operations. Second, the relatively low ratio

of surface area to volume of polar bears (because of their large body size) and their thick fur insulation render it

TABLE 4 Akaike's Information Criterion scores adjusted for small sample sizes (AICc) weights (highest in each
row has an asterisk) of mixed‐effects models used to predict the response of blood biochemical variables to
helicopter capture in polar bears, 2009. All models included the predictors of bear identification (ID), sex, and group
(defined by season and location of capture). Models B–G also included combinations of additional predictors:
duration of helicopter operations (duration), ambient temperature during capture (temp), a duration and
temperature interaction term, and dose of the immobilization drug.

Models A–G predictors (in addition to bear ID, sex, group)

AICc weights

Response
variable A B Duration C Temp D Dose

E Duration
+ temp

F Duration + temp
+ duration × temp

G Duration + temp
+ dose + duration × temp

Lymphocytes 0.01 0.01 0.10 0.00 0.61* 0.16 0.10

Neutrophils 0.00 0.05 0.00 0.01 0.57* 0.14 0.23

Sodium 0.07 0.20 0.12 0.02 0.41* 0.13 0.05

Cortisol 0.46* 0.12 0.20 0.15 0.05 0.01 0.00

Glucose 0.42* 0.12 0.24 0.13 0.06 0.02 0.01

WBCa 0.43* 0.14 0.17 0.16 0.05 0.03 0.01

Potassium 0.42* 0.23 0.11 0.16 0.05 0.02 0.02

ALTb 0.37* 0.21 0.11 0.10 0.05 0.13 0.04

GAc 0.40* 0.10 0.10 0.35 0.03 0.01 0.02

aWhite blood cells.
bAlanine aminotransferase.
cGlutamic acid.
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difficult for them to quickly dissipate an exercise‐induced heat load (Scholander et al. 1950, Guppy 1986). This

phenomenon makes it unlikely that Tabd could have spiked substantially and returned to lower values in less than an

hour. The monthly mean Tabd in this subpopulation declines from May to September because of reduced food

availability (Whiteman et al. 2015); this decline is approximately 0.7°C and is apparent only in long‐term, smoothed

data, leaving it possible for polar bears to experience brief periods of high Tabd during natural behavior even during

late summer.

We derived activity and body temperature data from recaptures in October and polar bears may respond

differently to helicopter operations and immobilization during other seasons. For example, polar bears are typically

in reduced body condition during April–May when spring captures are performed (Whiteman et al. 2018, Galicia

et al. 2019), which could help prevent elevated body temperatures because they are displacing less body mass

when running. Alternatively, their fur is likely denser during April–May than during late summer (Frisch et al. 1974),

which could increase the likelihood of high body temperatures. Similarly, the consequences of 4 days of reduced

activity immediately post‐capture (Thiemann et al. 2013, Rode et al. 2014) may be more profound during the

hyperphagia of April–May. In general, seasonal changes in physiology could also affect how polar bears respond to

intense events of natural behavior, suggesting that our inferences may apply across seasons.

Blood biochemistry in relation to helicopter operations

Among predictors describing helicopter operations, warmer ambient temperature during capture had the most

pronounced effects on blood biochemical variables. These results were based on data from captures across seasons

(Apr–May, Aug, and Oct). This effect of warm ambient temperature highlights that polar bears are poorly adapted

for dissipating heat. In our modeling of females captured in spring, increasing ambient temperature from the

minimum to the maximum value led to a stress leukogram. This pattern suggests that in response to capture,

lymphocytes were sequestered into lymph nodes for secondary immune surveillance and neutrophils were released

from bone marrow and tissue reservoirs to attack pathogens (Evans et al. 2001, Van Engen et al. 2014). Stress

leukograms are also often associated with an increase in the white blood cell count; it is unclear why we did not

observe this trend.

Stress leukograms have been used as a metric of capture response. Brown bears exhibited a greater stress

leukogram when captured via leg‐hold snares than via helicopter capture, likely because individuals in leg‐hold

snares were restrained for long periods before immobilization (Cattet et al. 2003). In that study, the differences in

percent neutrophils and in percent lymphocytes between bears captured via the 2 methods was similar to the

differences in our study caused by increasing ambient temperature from the minimum to the maximum value. Other

large carnivores such as wolves (Canis lupus) also exhibit stress leukograms in response to long periods of restraint

in leg‐hold snares (Santos et al. 2017).

The consequences of capture‐induced stress leukograms are unclear and have not been studied in bears. In a

study of a different large‐bodied mammal (ponies; Equus ferus caballus), stress leukograms were experimentally

induced by dexamethasome injections (a steroid that is analogous to hormones involved with stress responses;

Targowski 1975). The resulting decline in lymphocytes did not hinder the ability of lymphocytes to respond to

foreign substances (assessed in vitro by phytohemagglutinin‐induced activation). But the ability of WBC to

aggregate at the site of an injury may have been reduced (assessed in vivo by tissue swelling after antigen injection;

Targowski 1975). The latter result suggests a transient increase in infection susceptibility, although additional study

is needed. In the ponies and in humans (Suzuki et al. 1999, Peake et al. 2016), only several hours to several days

were needed to return to typical levels of percent lymphocytes and neutrophils. This potential for a quick recovery,

combined with the fact that helicopter capture is a single, discrete event, suggests that the stress leukograms we

observed were an acute stress response.
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In comparison to warm ambient temperatures, long durations of helicopter operations caused smaller

changes in percent lymphocytes and percent neutrophils. The maximum duration of helicopter operations was

also associated with a decline in blood sodium. The mechanism for this sodium decline is unclear because stress

and high body temperatures are expected to cause an increase. Indeed, the maximum ambient temperature was

associated with an increase in sodium, potentially reflecting dehydration and reduced kidney function (Hashim

2010). This temperature‐induced increase in sodium and the duration‐induced decrease in sodium were of small

magnitude.

Factors outside of our analysis may have obscured relationships between capture conditions and biochemical

variables. For example, cortisol and glucose were not influenced by helicopter operations, despite capture stress

generally causing their increase (Malisch et al. 2018). This may reflect that the hypothalamic‐pituitary‐adrenal stress

response is not graded during helicopter captures (i.e., it is more of an off or on response) or that cortisol can be

regulated by other mechanisms such as altering concentration of the binding protein (Chow et al. 2010, 2011;

Boonstra et al. 2020). In addition, our assessment of peak values of activity and body temperatures did not consider

the effect of different durations between initial captures and recaptures, as 15 of 17 datasets encompassed the

same duration (i.e., Aug–Oct). Polar bears could react more strongly if a previous capture was more recent. Other

potential limitations of our study include the small sample size of bears with activity and temperature loggers, and

that we relied on minimum and maximum values of duration, temperature, and dose to evaluate significance in our

blood biochemistry models; however, these values are consistent with our field experience.

RESEARCH IMPLICATIONS

When deciding on field methods, biologists should consider that helicopter capture is similar to the most intense

events that occur during natural behavior of polar bears. When helicopter capture is used, 2 datasets should be

collected to support future analyses. First, detailed narratives describing the helicopter pursuit could give a more

nuanced understanding of stressors (e.g., terrain, timing and duration of herding bears or swimming). Second,

capture site weather conditions (e.g., ambient temperature, wind, cloud cover) and timing of blood sample collection

could potentially help to explain variation in body temperature and biochemical variables. Lastly, future research

should investigate the mechanisms and consequences of capture‐induced stress leukograms, and account for their

influence in ecoimmunological studies.
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