769 research outputs found
Nonlinear resonance in a three-terminal carbon nanotube resonator
The RF-response of a three-terminal carbon nanotube resonator coupled to
RF-transmission lines is studied by means of perturbation theory and direct
numerical integration. We find three distinct oscillatory regimes, including
one regime capable of exhibiting very large hysteresis loops in the frequency
response. Considering a purely capacitive transduction, we derive a set of
algebraic equations which can be used to find the output power (S-parameters)
for a device connected to transmission lines with characteristic impedance
.Comment: 16 pages, 8 figure
A class of well-posed parabolic final value problems
This paper focuses on parabolic final value problems, and well-posedness is
proved for a large class of these. The clarification is obtained from Hilbert
spaces that characterise data that give existence, uniqueness and stability of
the solutions. The data space is the graph normed domain of an unbounded
operator that maps final states to the corresponding initial states. It induces
a new compatibility condition, depending crucially on the fact that analytic
semigroups always are invertible in the class of closed operators. Lax--Milgram
operators in vector distribution spaces constitute the main framework. The
final value heat conduction problem on a smooth open set is also proved to be
well posed, and non-zero Dirichlet data are shown to require an extended
compatibility condition obtained by adding an improper Bochner integral.Comment: 16 pages. To appear in "Applied and numerical harmonic analysis"; a
reference update. Conference contribution, based on arXiv:1707.02136, with
some further development
Radiative Transfer Effects in He I Emission Lines
We consider the effect of optical depth of the 2 ^{3}S level on the nebular
recombination spectrum of He I for a spherically symmetric nebula with no
systematic velocity gradients. These calculations, using many improvements in
atomic data, can be used in place of the earlier calculations of Robbins. We
give representative Case B line fluxes for UV, optical, and IR emission lines
over a range of physical conditions: T=5000-20000 K, n_{e}=1-10^{8} cm^{-3},
and tau_{3889}=0-100. A FORTRAN program for calculating emissivities for all
lines arising from quantum levels with n < 11 is also available from the
authors.
We present a special set of fitting formulae for the physical conditions
relevant to low metallicity extragalactic H II regions: T=12,000-20,000 K,
n_{e}=1-300 cm^{-3}, and tau_{3889} < 2.0. For this range of physical
conditions, the Case B line fluxes of the bright optical lines 4471 A, 5876 A,
and 6678 A, are changed less than 1%, in agreement with previous studies.
However, the 7065 A corrections are much smaller than those calculated by
Izotov & Thuan based on the earlier calculations by Robbins. This means that
the 7065 A line is a better density diagnostic than previously thought. Two
corrections to the fitting functions calculated in our previous work are also
given.Comment: To be published in 10 April 2002 ApJ; relevant code available at
ftp://wisp.physics.wisc.edu/pub/benjamin/Heliu
870 micron observations of nearby 3CRR radio galaxies
We present submillimeter continuum observations at 870 microns of the cores
of low redshift 3CRR radio galaxies, observed at the Heinrich Hertz
Submillimeter Telescope. The cores are nearly flat spectrum between the radio
and submillimeter which implies that the submillimeter continuum is likely to
be synchrotron emission and not thermal emission from dust. The emitted power
from nuclei detected at optical wavelengths and in the X-rays is similar in the
submillimeter, optical and X-rays. The submillimeter to optical and X-ray power
ratios suggest that most of these sources resemble misdirected BL Lac type
objects with synchrotron emission peaking at low energies. However we find
three exceptions, the FR I galaxy 3C264 and the FR II galaxies 3C390.3 and
3C338 with high X-ray to submillimeter luminosity ratios. These three objects
are candidate high or intermediate energy peaked BL Lac type objects. With
additional infrared observations and from archival data, we compile spectral
energy distributions (SEDs) for a subset of these objects. The steep dips
observed near the optical wavelengths in many of these objects suggest that
extinction inhibits the detection and reduces the flux of optical continuum
core counterparts. High resolution near or mid-infrared imaging may provide
better measurements of the underlying synchrotron emission peak.Comment: accepted for publication in A
Dust Formation and He II 4686 emission in the Dense Shell of the Peculiar Type Ib Supernova 2006jc
We present evidence for the formation of dust grains in an unusual Type Ib SN
based on late-time spectra of SN 2006jc. The progenitor suffered an LBV-like
outburst just 2 yr earlier, and we propose that the dust formation is a
consequence of the SN blast wave overtaking that LBV-like shell. The key
evidence for dust formation is (a) the appearance of a red/near-IR continuum
source fit by 1600 K graphite grains, and (b) fading of the redshifted sides of
He I emission lines, yielding progressively more asymmetric blueshifted lines
as dust obscures receding material. This provides the strongest case yet for
dust formation in any SN Ib/c. Both developments occurred between 51 and 75 d
after peak, while other SNe observed to form dust did so after a few hundred
days. Geometric considerations indicate that dust formed in the dense swept-up
shell between the forward and reverse shocks, and not in the freely expanding
SN ejecta. Rapid cooling leading to dust formation may have been aided by
extremely high shell densities, as indicated by He I line ratios. The brief
epoch of dust formation is accompanied by He II 4686 emission and enhanced
X-ray emission. These clues suggest that the unusual dust formation in this
object was not due to properties of the SN itself, but instead -- like most
peculiarities of SN 2006jc -- was a consequence of the dense environment
created by an LBV-like eruption 2 yr before the SN.Comment: ApJ, accepted. added some discussion and 2 figures, better title,
conclusions same as previous version. 12 pages, 4 color fig
Direct Measurement of the System-Environment Coupling as a Tool For Understanding Decoherence and Dynamical Decoupling
Decoherence is a major obstacle to any practical implementation of quantum
information processing. One of the leading strategies to reduce decoherence is
dynamical decoupling --- the use of an external field to average out the effect
of the environment. The decoherence rate under any control field can be
calculated if the spectrum of the coupling to the environment is known. We
present a direct measurement of the bath coupling spectrum in an ensemble of
optically trapped ultracold atoms, by applying a spectrally narrow-band control
field. The measured spectrum follows a Lorentzian shape at low frequencies, but
exhibits non-monotonic features at higher frequencies due to the oscillatory
motion of the atoms in the trap. These features agree with our analytical
models and numerical Monte-Carlo simulations of the collisional bath. From the
inferred bath-coupling spectrum, we predict the performance of well-known
dynamical decoupling sequences: CPMG, UDD and CDD. We then apply these
sequences in experiment and compare the results to predictions, finding good
agreement in the weak-coupling limit. Thus, our work establishes experimentally
the validity of the overlap integral formalism, and is an important step
towards the implementation of an optimal dynamical decoupling sequence for a
given measured bath spectrum.Comment: 9 pages, 6 figure
Theories of Reference: What Was the Question?
The new theory of reference has won popularity. However, a number of noted philosophers have also attempted to reply to the critical arguments of Kripke and others, and aimed to vindicate the description theory of reference. Such responses are often based on ingenious novel kinds of descriptions, such as rigidified descriptions, causal descriptions, and metalinguistic descriptions. This prolonged debate raises the doubt whether different parties really have any shared understanding of what the central question of the philosophical theory of reference is: what is the main question to which descriptivism and the causal-historical theory have presented competing answers. One aim of the paper is to clarify this issue. The most influential objections to the new theory of reference are critically reviewed. Special attention is also paid to certain important later advances in the new theory of reference, due to Devitt and others
Sensing remote nuclear spins
Sensing single nuclear spins is a central challenge in magnetic resonance
based imaging techniques. Although different methods and especially diamond
defect based sensing and imaging techniques in principle have shown sufficient
sensitivity, signals from single nuclear spins are usually too weak to be
distinguished from background noise. Here, we present the detection and
identification of remote single C-13 nuclear spins embedded in nuclear spin
baths surrounding a single electron spins of a nitrogen-vacancy centre in
diamond. With dynamical decoupling control of the centre electron spin, the
weak magnetic field ~10 nT from a single nuclear spin located ~3 nm from the
centre with hyperfine coupling as weak as ~500 Hz is amplified and detected.
The quantum nature of the coupling is confirmed and precise position and the
vector components of the nuclear field are determined. Given the distance over
which nuclear magnetic fields can be detected the technique marks a firm step
towards imaging, detecting and controlling nuclear spin species external to the
diamond sensor
Long-time Low-latency Quantum Memory by Dynamical Decoupling
Quantum memory is a central component for quantum information processing
devices, and will be required to provide high-fidelity storage of arbitrary
states, long storage times and small access latencies. Despite growing interest
in applying physical-layer error-suppression strategies to boost fidelities, it
has not previously been possible to meet such competing demands with a single
approach. Here we use an experimentally validated theoretical framework to
identify periodic repetition of a high-order dynamical decoupling sequence as a
systematic strategy to meet these challenges. We provide analytic
bounds-validated by numerical calculations-on the characteristics of the
relevant control sequences and show that a "stroboscopic saturation" of
coherence, or coherence plateau, can be engineered, even in the presence of
experimental imperfection. This permits high-fidelity storage for times that
can be exceptionally long, meaning that our device-independent results should
prove instrumental in producing practically useful quantum technologies.Comment: abstract and authors list fixe
Nebular abundances of southern symbiotic stars
We have calculated relative elemental abundances for a sample of 43 symbiotic
stars. Helium abundances and the relative elemental abundances N/O, Ne/O, Ar/O
were derived from new spectra collected in the optical range through low
dispersion spectroscopy. The He ionic abundances were derived taking into
account self-absorption effects in Balmer lines. We found that the symbiotic
stars in the galactic bulge have heavy element abundances showing the same wide
distribution as other bulge objects. In the galactic disk, the symbiotic stars
follow the abundance gradient as derived from different kinds of objects.Comment: 12 pages, 6 figures, A&A - accepte
- …
