6,256 research outputs found

    Synthesis and Characterization of Tungstite (WO3.H2O) Nanoleaves and Nanoribbons

    Full text link
    An environmentally benign method capable of producing large quantities of materials was used to synthesize tungstite (WO3.H2O) leaf-shaped nanoplatelets (LNPs) and nanoribbons (NRs). These materials were simply obtained by aging of colloidal solutions prepared by adding hydrochloric acid (HCl) to dilute sodium tungstate solutions (Na2WO4.2H2O) at a temperature of 5-10oC. The aging medium and the pH of the precursor solutions were also investigated. Crystallization and growth occurred by Ostwald ripening during the aging of the colloidal solutions at ambient temperature for 24 to 48hrs. When dispersed in water, the LNPs and NRs take many days to settle, which is a clear advantage for some applications (e.g., photocatalysis). The materials were characterized using scanning and transmission electron microscopy, Raman and UV/Vis spectroscopies. The current versus voltage characteristics of the tungstite NRs showed that the material behaved as a Schottky diode with a breakdown electric field of 3.0x105V.m-1. They can also be heat treated at relatively low temperatures (300oC) to form tungsten oxide (WO3) NRs and be used as photoanodes for photoelectrochemical water splitting.Comment: 12 pages, 5 figure

    Is There a Negative Thermal Expansion in Supported Metal Nanoparticles? An In-Situ X-ray Absorption Study Coupled with Neural Network Analysis

    No full text
    Interactions with their support, adsorbates and unique structural motifs are responsible for the many intriguing properties and potential applications of supported metal nanoparticles (NPs). At the same time, they complicate the interpretation of experimental data. In fact, the methods and approaches that work well for the ex situ analysis of bulk materials may be inaccurate or introduce artifacts in the in situ analysis of nanomaterials. Here we revisit the controversial topic of negative thermal expansion and anomalies in the Debye temperature reported for oxide-supported metal NPs. In situ X-ray absorption experimental data collected for Pt NPs in ultrahigh vacuum and an advanced data analysis approach based on an artificial neural network demonstrate that Pt NPs do not exhibit intrinsic negative thermal expansion. Similarly as for bulk materials, in the absence of adsorbates the bond lengths in metal NPs increase with temperature. The previously reported anomalies in particle size-dependent Debye temperatures can also be linked to the artifacts in the interpretation of conventional X-ray absorption data of disordered materials such as NPs

    The use of pulse oximetry in evaluation of pulp vitality in immature permanent teeth

    Get PDF
    Background and aim: The current methods of pulp vitality assessment, either electric or thermal, are of limited use in children. Recently, traumatized and immature teeth may not respond to such methods and because such methods require subjective responses, it may not provide accurate results particularly in children. Pulse oximetry, an atraumatic approach, is used to measure oxygen saturation in vascular system. The aim of this study was to investigate the use of pulse oximetry to evaluate pulp vitality status in immature permanent teeth. Methods and materials: The study was conducted on 329 maxillary central and lateral incisors in children. The negative control group consisted of 10 root filled teeth. Systemic oxygen saturation was first measured on the thumb of the individual using a custom-made sensor. Oxygen saturation values of the teeth were then evaluated. The correlation between oxygen saturation measurement obtained from finger and tooth, and the correlation between oxygen saturation values and stage of root development were analyzed. A further comparison was made between the teeth with open and closed apex. Results: Mean oxygen values recorded in the patient's finger were 97.17, and mean oxygen values in the maxillary central and lateral incisors were 86.77 and 83/92, respectively. There was no significant correlation between blood oxygen levels in the finger and in the teeth. (P > 0.05) There was a significant negative correlation between the stage of root development and the blood oxygen levels in the patients' teeth. (P < 0.05) Mean oxygen values in the teeth with open apex were significantly higher than the teeth with closed apex. (P < 0.001). Conclusion: Vital teeth provided consistent oxygen saturation readings, and non-vital teeth recorded no oxygen saturation values. During tooth development, the oxygen saturation values decreased. These findings confirm that the pulse oximetry is capable of detecting the pulpal blood flow and oxygen saturation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

    Computations on Sofic S-gap Shifts

    Full text link
    Let S={sn}S=\{s_{n}\} be an increasing finite or infinite subset of N⋃{0}\mathbb N \bigcup \{0\} and X(S)X(S) the SS-gap shift associated to SS. Let fS(x)=1−∑1xsn+1f_{S}(x)=1-\sum\frac{1}{x^{s_{n}+1}} be the entropy function which will be vanished at 2h(X(S))2^{h(X(S))} where h(X(S))h(X(S)) is the entropy of the system. Suppose X(S)X(S) is sofic with adjacency matrix AA and the characteristic polynomial χA\chi_{A}. Then for some rational function QS Q_{S} , χA(x)=QS(x)fS(x)\chi_{A}(x)=Q_{S}(x)f_{S}(x). This QS Q_{S} will be explicitly determined. We will show that ζ(t)=1fS(t−1)\zeta(t)=\frac{1}{f_{S}(t^{-1})} or ζ(t)=1(1−t)fS(t−1)\zeta(t)=\frac{1}{(1-t)f_{S}(t^{-1})} when ∣S∣<∞|S|<\infty or ∣S∣=∞|S|=\infty respectively. Here ζ\zeta is the zeta function of X(S)X(S). We will also compute the Bowen-Franks groups of a sofic SS-gap shift.Comment: This paper has been withdrawn due to extending results about SFT shifts to sofic shifts (Theorem 2.3). This forces to apply some minor changes in the organization of the paper. This paper has been withdrawn due to a flaw in the description of the adjacency matrix (2.3

    Quantum walks on general graphs

    Full text link
    Quantum walks, both discrete (coined) and continuous time, on a general graph of N vertices with undirected edges are reviewed in some detail. The resource requirements for implementing a quantum walk as a program on a quantum computer are compared and found to be very similar for both discrete and continuous time walks. The role of the oracle, and how it changes if more prior information about the graph is available, is also discussed.Comment: 8 pages, v2: substantial rewrite improves clarity, corrects errors and omissions; v3: removes major error in final section and integrates remainder into other sections, figures remove

    An Efficient Automatic Mass Classification Method In Digitized Mammograms Using Artificial Neural Network

    Full text link
    In this paper we present an efficient computer aided mass classification method in digitized mammograms using Artificial Neural Network (ANN), which performs benign-malignant classification on region of interest (ROI) that contains mass. One of the major mammographic characteristics for mass classification is texture. ANN exploits this important factor to classify the mass into benign or malignant. The statistical textural features used in characterizing the masses are mean, standard deviation, entropy, skewness, kurtosis and uniformity. The main aim of the method is to increase the effectiveness and efficiency of the classification process in an objective manner to reduce the numbers of false-positive of malignancies. Three layers artificial neural network (ANN) with seven features was proposed for classifying the marked regions into benign and malignant and 90.91% sensitivity and 83.87% specificity is achieved that is very much promising compare to the radiologist's sensitivity 75%.Comment: 13 pages, 10 figure
    • …
    corecore