1,648 research outputs found
Classical and quantized aspects of dynamics in five dimensional relativity
A null path in 5D can appear as a timelike path in 4D, and for a certain
gauge in 5D the motion of a massive particle in 4D obeys the usual quantization
rule with an uncertainty-type relation. Generalizations of this result are
discussed in regard to induced-matter and membrane theory.Comment: 26 pages, in press in Class. Quant. Gra
An exact solution of the five-dimensional Einstein equations with four-dimensional de Sitter-like expansion
We present an exact solution to the Einstein field equations which is Ricci
and Riemann flat in five dimensions, but in four dimensions is a good model for
the early vacuum-dominated universe.Comment: 6 pages; to appear in Journal of Mathematical Physics; v2: reference
3 correcte
Causal Anomalies in Kaluza-Klein Gravity Theories
Causal anomalies in two Kaluza-Klein gravity theories are examined,
particularly as to whether these theories permit solutions in which the
causality principle is violated. It is found that similarly to general
relativity the field equations of the space-time-mass Kaluza-Klein (STM-KK)
gravity theory do not exclude violation of causality of G\"odel type, whereas
the induced matter Kaluza-Klein (IM-KK) gravity rules out noncausal
G\"odel-type models. The induced matter version of general relativity is shown
to be an efficient therapy for causal anomalies that occurs in a wide class of
noncausal geometries. Perfect fluid and dust G\"odel-type solutions of the
STM-KK field equations are studied. It is shown that every G\"odel-type perfect
fluid solution is isometric to the unique dust solution of the STM-KK field
equations. The question as to whether 5-D G\"odel-type non-causal geometries
induce any physically acceptable 4-D energy-momentum tensor is also addressed.Comment: 16 page. LaTex file. To appear in Int. J. Mod. Phys. A (1998
Wave Mechanics and General Relativity: A Rapprochement
Using exact solutions, we show that it is in principle possible to regard
waves and particles as representations of the same underlying geometry, thereby
resolving the problem of wave-particle duality
FLRW Universes from "Wave-Like" Cosmologies in 5D
We consider the evolution of a 4D-universe embedded in a five-dimensional
(bulk) world with a large extra dimension and a cosmological constant. The
cosmology in 5D possesses "wave-like" character in the sense that the metric
coefficients in the bulk are functions of the extra coordinate and time in a
way similar to a pulse or traveling wave propagating along the fifth dimension.
This assumption is motivated by some recent work presenting the big-bang as a
higher dimensional shock wave. We show that this assumption, together with an
equation of state for the effective matter quantities in 4D, allows Einstein's
equations to be fully integrated. We then recover the familiar FLRW universes,
on the four-dimensional hypersurfaces orthogonal to the extra dimension.
Regarding the extra dimension we find that it is {\em growing} in size if the
universe is speeding up its expansion. We also get an estimate for the relative
change of the extra dimension over time. This estimate could have important
observational implications, notably for the time variation of rest mass,
electric charge and the gravitational "constant". Our results extend previous
ones in the literature.Comment: Few comments added, references updated. To appear in Int. J. of Mod.
Phys.
Extra symmetry in the field equations in 5D with spatial spherical symmetry
We point out that the field equations in 5D, with spatial spherical symmetry,
possess an extra symmetry that leaves them invariant. This symmetry corresponds
to certain simultaneous interchange of coordinates and metric coefficients. As
a consequence a single solution in 5D can generate very different scenarios in
4D, ranging from static configurations to cosmological situations. A new
perspective emanates from our work. Namely, that different astrophysical and
cosmological scenarios in 4D might correspond to the same physics in 5D. We
present explicit examples that illustrate this point of view.Comment: Typos corrected. Accepted for publication in Classical and Quantum
Gravit
Cosmological Implications of a Non-Separable 5D Solution of the Vacuum Einstein Field Equations
An exact class of solutions of the 5D vacuum Einstein field equations (EFEs)
is obtained. The metric coefficients are found to be non-separable functions of
time and the extra coordinate and the induced metric on = constant
hypersurfaces has the form of a Friedmann-Robertson-Walker cosmology. The 5D
manifold and 3D and 4D submanifolds are in general curved, which distinguishes
this solution from previous ones in the literature. The singularity structure
of the manifold is explored: some models in the class do not exhibit a big
bang, while other exhibit a big bang and a big crunch. For the models with an
initial singularity, the equation of state of the induced matter evolves from
radiation like at early epochs to Milne-like at late times and the big bang
manifests itself as a singular hypersurface in 5D. The projection of comoving
5D null geodesics onto the 4D submanifold is shown to be compatible with
standard 4D comoving trajectories, while the expansion of 5D null congruences
is shown to be in line with conventional notions of the Hubble expansion.Comment: 8 pages, in press in J. Math. Phy
Null Geodesics in Five Dimensional Manifolds
We analyze a class of 5D non-compact warped-product spaces characterized by
metrics that depend on the extra coordinate via a conformal factor. Our model
is closely related to the so-called canonical coordinate gauge of Mashhoon et
al. We confirm that if the 5D manifold in our model is Ricci-flat, then there
is an induced cosmological constant in the 4D sub-manifold. We derive the
general form of the 5D Killing vectors and relate them to the 4D Killing
vectors of the embedded spacetime. We then study the 5D null geodesic paths and
show that the 4D part of the motion can be timelike -- that is, massless
particles in 5D can be massive in 4D. We find that if the null trajectories are
affinely parameterized in 5D, then the particle is subject to an anomalous
acceleration or fifth force. However, this force may be removed by
reparameterization, which brings the correct definition of the proper time into
question. Physical properties of the geodesics -- such as rest mass variations
induced by a variable cosmological ``constant'', constants of the motion and 5D
time-dilation effects -- are discussed and are shown to be open to experimental
or observational investigation.Comment: 19 pages, REVTeX, in press in Gen. Rel. Gra
Possible Wormhole Solutions in (4+1) Gravity
We extend previous analyses of soliton solutions in (4+1) gravity to new
ranges of their defining parameters. The geometry, as studied using invariants,
has the topology of wormholes found in (3+1) gravity. In the induced-matter
picture, the fluid does not satisfy the strong energy conditions, but its
gravitational mass is positive. We infer the possible existance of (4+1)
wormholes which, compared to their (3+1) counterparts, are less exotic.Comment: 3 pages, latex, 1 figure
The extinction and dust-to-gas structure of the planetary nebula NGC 7009 observed with MUSE
The large field and wavelength range of MUSE is well suited to mapping
Galactic planetary nebulae (PN). The bright PN NGC 7009 was observed with MUSE
on the VLT during the Science Verification of the instrument in seeing of 0.6".
Emission line maps in hydrogen Balmer and Paschen lines were formed from
analysis of the MUSE cubes. The measured electron temperature and density from
the MUSE cube were employed to predict the theoretical hydrogen line ratios and
map the extinction distribution across the nebula. After correction for the
interstellar extinction to NGC 7009, the internal dust-to-gas ratio (A_V/N_H)
has been mapped for the first time in a PN. The extinction map of NGC 7009 has
considerable structure, broadly corresponding to the morphological features of
the nebula. A large-scale feature in the extinction map, consisting of a crest
and trough, occurs at the rim of the inner shell. The nature of this feature
was investigated and instrumental and physical causes considered; no convincing
mechanisms were identified to produce this feature, other than mass loss
variations in the earlier asymptotic giant branch phase. The dust-to-gas ratio
A_V/N_H increases from 0.7 times the interstellar value to >5 times from the
centre towards the periphery of the ionized nebula. The integrated A_V/N_H is
about 2 times the mean ISM value. It is demonstrated that extinction mapping
with MUSE provides a powerful tool for studying the distribution of PN internal
dust and the dust-to-gas ratio. (Abridged.)Comment: 10 pages, 7 figures. Accepted by A&
- …