7,823 research outputs found

    Hybrid Quantum Repeater Protocol With Fast Local Processing

    Full text link
    We propose a hybrid quantum repeater protocol combining the advantages of continuous and discrete variables. The repeater is based on the previous work of Brask et al. [Phys. Rev. Lett. 105, 160501 (2010)] but we present two ways of improving this protocol. In the previous protocol entangled single-photon states are produced and grown into superpositions of coherent states, known as two-mode cat states. The entanglement is then distributed using homodyne detection. To improve the protocol, we replace the time-consuming non-local growth of cat states with local growth of single-mode cat states, eliminating the need for classical communication during growth. Entanglement is generated in subsequent connection processes. Furthermore the growth procedure is optimized. We review the main elements of the original protocol and present the two modifications. Finally the two protocols are compared and the modified protocol is shown to perform significantly better than the original protocol.Comment: 14 pages, 7 figure

    Ground-State Energy and Spin Gap of Spin-1/2 Kagome Heisenberg Antiferromagnetic Clusters: Large Scale Exact Diagonalization Results

    Full text link
    We present a comprehensive list of ground state energies and spin gaps of finite kagome clusters with up to 42 spins obtained using large-scale exact diagonalization techniques. This represents the current limit of this exact approach. For a fixed number of spins N we study several cluster shapes under periodic boundary conditions in both directions resulting in a toroidal geometry. The clusters are characterized by their side length and diagonal as well as the shortest "Manhattan" diameter of the torii. A finite-size scaling analysis of the ground state energy as well as the spin gap is then performed in terms of the shortest toroidal diameter as well as the shortest "Manhattan" diameter. The structure of the spin-spin correlations further supports the importance of short loops wrapping around the torii.Comment: 4 pages, 4 figures, added one referenc

    Dissipative preparation of entanglement in optical cavities

    Full text link
    We propose a novel scheme for the preparation of a maximally entangled state of two atoms in an optical cavity. Starting from an arbitrary initial state, a singlet state is prepared as the unique fixed point of a dissipative quantum dynamical process. In our scheme, cavity decay is no longer undesirable, but plays an integral part in the dynamics. As a result, we get a qualitative improvement in the scaling of the fidelity with the cavity parameters. Our analysis indicates that dissipative state preparation is more than just a new conceptual approach, but can allow for significant improvement as compared to preparation protocols based on coherent unitary dynamics.Comment: 4 pages, 2 figure

    Stability and structure of two coupled boson systems in an external field

    Full text link
    The lowest adiabatic potential expressed in hyperspherical coordinates is estimated for two boson systems in an external harmonic trap. Corresponding conditions for stability are investigated and the related structures are extracted for zero-range interactions. Strong repulsion between non-identical particles leads to two new features, respectively when identical particles attract or repel each other. For repulsion new stable structures arise with displaced center of masses. For attraction the mean-field stability region is restricted due to motion of the center of masses

    Bogoliubov theory of entanglement in a Bose-Einstein condensate

    Full text link
    We consider a Bose-Einstein condensate which is illuminated by a short resonant light pulse that coherently couples two internal states of the atoms. We show that the subsequent time evolution prepares the atoms in an interesting entangled state called a spin squeezed state. This evolution is analysed in detail by developing a Bogoliubov theory which describes the entanglement of the atoms. Our calculation is a consistent expansion in 1/N1/\sqrt{N}, where NN is the number of particles in the condensate, and our theory predict that it is possible to produce spin squeezing by at least a factor of 1/N1/\sqrt{N}. Within the Bogoliubov approximation this result is independent of temperature.Comment: 14 pages, including 5 figures, minor changes in the presentatio

    Effective Hamiltonian Theory and Its Applications in Quantum Information

    Full text link
    This paper presents a useful compact formula for deriving an effective Hamiltonian describing the time-averaged dynamics of detuned quantum systems. The formalism also works for ensemble-averaged dynamics of stochastic systems. To illustrate the technique we give examples involving Raman processes, Bloch-Siegert shifts and Quantum Logic Gates.Comment: 5 pages, 3 figures, to be published in Canadian Journal of Physic

    Towards low-dimensional hole systems in Be-doped GaAs nanowires

    Full text link
    GaAs was central to the development of quantum devices but is rarely used for nanowire-based quantum devices with InAs, InSb and SiGe instead taking the leading role. p-type GaAs nanowires offer a path to studying strongly-confined 0D and 1D hole systems with strong spin-orbit effects, motivating our development of nanowire transistors featuring Be-doped p-type GaAs nanowires, AuBe alloy contacts and patterned local gate electrodes towards making nanowire-based quantum hole devices. We report on nanowire transistors with traditional substrate back-gates and EBL-defined metal/oxide top-gates produced using GaAs nanowires with three different Be-doping densities and various AuBe contact processing recipes. We show that contact annealing only brings small improvements for the moderately-doped devices under conditions of lower anneal temperature and short anneal time. We only obtain good transistor performance for moderate doping, with conduction freezing out at low temperature for lowly-doped nanowires and inability to reach a clear off-state under gating for the highly-doped nanowires. Our best devices give on-state conductivity 95 nS, off-state conductivity 2 pS, on-off ratio ~10410^{4}, and sub-threshold slope 50 mV/dec at T = 4 K. Lastly, we made a device featuring a moderately-doped nanowire with annealed contacts and multiple top-gates. Top-gate sweeps show a plateau in the sub-threshold region that is reproducible in separate cool-downs and indicative of possible conductance quantization highlighting the potential for future quantum device studies in this material system

    Spin Squeezing in the Ising Model

    Get PDF
    We analyze the collective spin noise in interacting spin systems. General expressions are derived for the short time behaviour of spin systems with general spin-spin interactions, and we suggest optimum experimental conditions for the detection of spin squeezing. For Ising models with site dependent nearest neighbour interactions general expressions are presented for the spin squeezing parameter for all times. The reduction of collective spin noise can be used to verify the entangling powers of quantum computer architectures based on interacting spins.Comment: 7 pages, including 3 figure

    Stability of atomic clocks based on entangled atoms

    Full text link
    We analyze the effect of realistic noise sources for an atomic clock consisting of a local oscillator that is actively locked to a spin-squeezed (entangled) ensemble of NN atoms. We show that the use of entangled states can lead to an improvement of the long-term stability of the clock when the measurement is limited by decoherence associated with instability of the local oscillator combined with fluctuations in the atomic ensemble's Bloch vector. Atomic states with a moderate degree of entanglement yield the maximal clock stability, resulting in an improvement that scales as N1/6N^{1/6} compared to the atomic shot noise level.Comment: 4 pages, 2 figures, revtex

    Multi-particle entanglement of hot trapped ions

    Full text link
    We propose an efficient method to produce multi-particle entangled states of ions in an ion trap for which a wide range of interesting effects and applications have been suggested. Our preparation scheme exploits the collective vibrational motion of the ions, but it works in such a way that this motion need not be fully controlled in the experiment. The ions may, e.g., be in thermal motion and exchange mechanical energy with a surrounding heat bath without detrimental effects on the internal state preparation. Our scheme does not require access to the individual ions in the trap.Comment: 4 pages, including 3 figures. To appear in Phys. Rev. Lett. This paper previously appeared under the name "Schrodingers cat in a hot trap". The paper has been revised according to Phys. Rev. policy on Schrodinger cats. No cats were harmed during the production of this manuscrip
    • …
    corecore