134 research outputs found

    Statistical mechanics of voting

    Full text link
    Decision procedures aggregating the preferences of multiple agents can produce cycles and hence outcomes which have been described heuristically as `chaotic'. We make this description precise by constructing an explicit dynamical system from the agents' preferences and a voting rule. The dynamics form a one dimensional statistical mechanics model; this suggests the use of the topological entropy to quantify the complexity of the system. We formulate natural political/social questions about the expected complexity of a voting rule and degree of cohesion/diversity among agents in terms of random matrix models---ensembles of statistical mechanics models---and compute quantitative answers in some representative cases.Comment: 9 pages, plain TeX, 2 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages

    The Complexity of Computing Minimal Unidirectional Covering Sets

    Full text link
    Given a binary dominance relation on a set of alternatives, a common thread in the social sciences is to identify subsets of alternatives that satisfy certain notions of stability. Examples can be found in areas as diverse as voting theory, game theory, and argumentation theory. Brandt and Fischer [BF08] proved that it is NP-hard to decide whether an alternative is contained in some inclusion-minimal upward or downward covering set. For both problems, we raise this lower bound to the Theta_{2}^{p} level of the polynomial hierarchy and provide a Sigma_{2}^{p} upper bound. Relatedly, we show that a variety of other natural problems regarding minimal or minimum-size covering sets are hard or complete for either of NP, coNP, and Theta_{2}^{p}. An important consequence of our results is that neither minimal upward nor minimal downward covering sets (even when guaranteed to exist) can be computed in polynomial time unless P=NP. This sharply contrasts with Brandt and Fischer's result that minimal bidirectional covering sets (i.e., sets that are both minimal upward and minimal downward covering sets) are polynomial-time computable.Comment: 27 pages, 7 figure

    Is democracy an option for the realist?

    Get PDF
    In Democracy for Realists, Christopher Achen and Larry Bartels argue that the depressingly well-established fact that people are woefully ignorant on politically relevant matters renders democratic ideals mere “fairy tales.” However, this iconoclasm stands in deep tension with the prescriptions they themselves end up offer-ing towards the end of the book, which coincide to a surprising extent with those that have been offered by democrats for decades. This is a problem because, if we take seriously the type of data that Achen and Bartels rely on (and add to)—data that should make us realists in the sense of the book’s title—it is not clear that democracy in any recognizable sense remains an option for the realist

    The Calculus of Committee Composition

    Get PDF
    Modern institutions face the recurring dilemma of designing accurate evaluation procedures in settings as diverse as academic selection committees, social policies, elections, and figure skating competitions. In particular, it is essential to determine both the number of evaluators and the method for combining their judgments. Previous work has focused on the latter issue, uncovering paradoxes that underscore the inherent difficulties. Yet the number of judges is an important consideration that is intimately connected with the methodology and the success of the evaluation. We address the question of the number of judges through a cost analysis that incorporates the accuracy of the evaluation method, the cost per judge, and the cost of an error in decision. We associate the optimal number of judges with the lowest cost and determine the optimal number of judges in several different scenarios. Through analytical and numerical studies, we show how the optimal number depends on the evaluation rule, the accuracy of the judges, the (cost per judge)/(cost per error) ratio. Paradoxically, we find that for a panel of judges of equal accuracy, the optimal panel size may be greater for judges with higher accuracy than for judges with lower accuracy. The development of any evaluation procedure requires knowledge about the accuracy of evaluation methods, the costs of judges, and the costs of errors. By determining the optimal number of judges, we highlight important connections between these quantities and uncover a paradox that we show to be a general feature of evaluation procedures. Ultimately, our work provides policy-makers with a simple and novel method to optimize evaluation procedures
    corecore