580 research outputs found

    Disorder, inhomogeneity and spin dynamics in f-electron non-Fermi liquid systems

    Full text link
    Muon spin rotation and relaxation (μ\muSR) experiments have yielded evidence that structural disorder is an important factor in many f-electron-based non-Fermi-liquid (NFL) systems. Disorder-driven mechanisms for NFL behaviour are suggested by the observed broad and strongly temperature-dependent μ\muSR (and NMR) linewidths in several NFL compounds and alloys. Local disorder-driven theories (Kondo disorder, Griffiths-McCoy singularity) are, however, not capable of describing the time-field scaling seen in muon spin relaxation experiments, which suggest cooperative and critical spin fluctuations rather than a distribution of local fluctuation rates. A strong empirical correlation is established between electronic disorder and slow spin fluctuations in NFL materialsComment: 24 pages, 15 figures, submitted to J. Phys.: Condens. Matte

    Susceptibility Inhomogeneity and Non-Fermi-Liquid Behavior in Ce(Ru_{0.5}Rh_{0.5})_2Si_2

    Full text link
    Magnetic susceptibility and muon spin rotation (\muSR) experiments have been carried out to study the effect of structural disorder on the non-Fermi-liquid (NFL) behavior of the heavy-fermion alloy Ce(Ru_{0.5}Rh_{0.5})_2Si_2. Analysis of the bulk susceptibility in the framework of disorder-driven Griffiths-phase and Kondo-disorder models for NFL behavior yields relatively narrow distributions of characteristic spin fluctuation energies, in agreement with \muSR linewidths that give the inhomogeneous spread in susceptibility. \muSR and NMR data both indicate that disorder explains the "nearly NFL" behavior observed above \sim2 K, but does not dominate the NFL physics found at low temperatures and low magnetic fields.Comment: 6 pages, 4 figures, REVTeX, submitted to Phys. Rev.

    Microscopic evidence for field-induced magnetism in CeCoIn5_5

    Full text link
    We present NMR data in the normal and superconducting states of CeCoIn5_5 for fields close to Hc2(0)=11.8H_{\rm c2}(0)=11.8 T in the abab plane. Recent experiments identified a first-order transition from the normal to superconducting state for H>10.5H> 10.5 T, and a new thermodynamic phase below 290 mK within the superconducting state. We find that the Knight shifts of the In(1), In(2) and the Co are discontinuous across the first-order transition and the magnetic linewidths increase dramatically. The broadening differs for the three sites, unlike the expectation for an Abrikosov vortex lattice, and suggests the presence of static spin moments in the vortex cores. In the low-temperature and high-field phase the broad NMR lineshapes suggest ordered local moments, rather than a long wavelength quasiparticle spin density modulation expected for an FFLO phase.Comment: 4 pages, 4 figures. to appear in Phys. Rev. Let

    Knight Shift Anomalies in Heavy Electron Materials

    Full text link
    We calculate non-linear Knight Shift KK vs. susceptibility χ\chi anomalies for Ce ions possessing local moments in metals. The ions are modeled with the Anderson Hamiltonian and studied within the non-crossing approximation (NCA). The K−vs.−χK-vs.- \chi non-linearity diminishes with decreasing Kondo temperature T0T_0 and nuclear spin- local moment separation. Treating the Ce ions as an incoherent array in CeSn3_3, we find excellent agreement with the observed Sn K(T)K(T) data.Comment: 4 pages, Revtex, 3 figures available upon request from [email protected]

    Magneto-Transport Properties of Doped RuSr2_2GdCu2_2O8_8

    Get PDF
    RuSr2_2GdCu2_2O8_8, in which magnetic order and superconductivity coexist with TMagneticT_{Magnetic}≫\ggTcT_c, is a complex material which poses new and important questions to our understanding of the interplay between magnetic and superconducting (SC) order. Resistivity, Hall effect and thermopower measurements on sintered ceramic RuSr2_2GdCu2_2O8_8 are presented, together with results on a broad range of substituted analogues. The Hall effect and thermopower both show anomalous decreases below TMagneticT_{Magnetic} which may be explained within a simple two-band model by a transition from localized to more itinerant behavior in the RuO2_2 layer at TMagneticT_{Magnetic}.Comment: 10 pages, 7 figures, submitted to Phys. Rev. B., correspondence to [email protected]

    Penetration depth, multiband superconductivity, and absence of muon-induced perturbation in superconducting PrOs4_{4}Sb12_{12}

    Full text link
    Transverse-field muon spin rotation (μ\muSR) experiments in the heavy-fermion superconductor PrOs4_{4}Sb12_{12} (Tc=1.85T_{c}=1.85 K) suggest that the superconducting penetration depth λ(T)\lambda(T) is temperature-independent at low temperatures, consistent with a gapped quasiparticle excitation spectrum. In contrast, radiofrequency (rf) inductive measurements yield a stronger temperature dependence of λ(T)\lambda(T), indicative of point nodes in the gap. This discrepancy appears to be related to the multiband structure of PrOs4_{4}Sb12_{12}. Muon Knight shift measurements in PrOs4_{4}Sb12_{12} suggest that the perturbing effect of the muon charge on the neighboring Pr3+^{3+} crystalline electric field is negligibly small, and therefore is unlikely to cause the difference between the μ\muSR and rf results.Comment: 10 pages, 7 figure

    The Synthesis, Structure and Physical Properties of the Layered Ruthenocuprates RuSr2GdCu2O8 and Pb2Sr2Cu2RuO8Cl

    Get PDF
    Studies of the structure and physical properties of the layered rutheno- cuprates RuSr2GdCu2O8 and Pb2Sr2Cu2RuO8Cl are reviewed. RuSr2GdCu2O8 is a weak ferromagnetic superconductor and doping studies have shown that it is possible to tune the magnetic and superconducting transitions simultaneously. The average crystal structure of RuSr2GdCu2O8 is tetragonal at both 10 and 295 K (space group P4/mmm), but a sq.root2a x sq.root2a x c superstructure resulting from coherent rotations of the RuO6 octahedra within subdomains of 50-200 ºA is observed by selected area electron distraction (SAED). The same tilts and rotations of the RuO6 octahedra are observed in semiconducting Pb2Sr2Cu2RuO8Cl, which has strikingly similar magnetic properties to RuSr2GdCu2O8. Antiferromagnetic order is observed in the 10 K neutron diffraction pattern with a Ru moment of 1.1(1) B, but a spin-flop transition is observed above a field of 0.5 T

    Direct observation of the quantum critical point in heavy fermion CeRhSi3_3

    Full text link
    We report on muon spin rotation studies of the noncentrosymmetric heavy fermion antiferromagnet CeRhSi3_3. A drastic and monotonic suppression of the internal fields, at the lowest measured temperature, was observed upon an increase of external pressure. Our data suggest that the ordered moments are gradually quenched with increasing pressure, in a manner different from the pressure dependence of the N\'eel temperature. At \unit{23.6}{kbar}, the ordered magnetic moments are fully suppressed via a second-order phase transition, and TNT_{\rm{N}} is zero. Thus, we directly observed the quantum critical point at \unit{23.6}{kbar} hidden inside the superconducting phase of CeRhSi3_3
    • …
    corecore