21 research outputs found

    Search for NTRK1 proto-oncogene rearrangements in human thyroid tumours originated after therapeutic radiation

    Get PDF
    Rearrangements of NTRK1 proto-oncogene were detected in ‘spontaneous’ papillary thyroid carcinomas with a frequency varying from 5 to 25% in different studies. These rearrangements result in the formation of chimaeric genes composed of the tyrosine kinase domain of NTRK1 fused to 5â€Č sequences of different genes. To investigate if the NTRK1 gene plays a role in radiation-induced thyroid carcinogenesis, we looked for the presence of NTRK1 -activating rearrangements in 32 human thyroid tumours (16 follicular adenomas, 14 papillary carcinomas and two lymph-node metastases of papillary thyroid carcinomas) from patients who had received external radiation, using the reverse transcription polymerase chain reaction, Southern blot and direct sequencing techniques. These data were compared with those obtained in a series of 28 ‘spontaneous’ benign and malignant thyroid tumours, collected from patients without a history of radiation exposure and four in vitro culture cell lines derived from ‘spontaneous’ thyroid cancers. Our results concerning the radiation-associated tumours showed that only rearrangements between NTRK1 and TPM3 genes (TRK oncogene) were detected in 2/14 papillary carcinomas and in one lymph-node metastasis of one of these papillary thyroid carcinomas. All the radiation-associated adenomas were negative. In the ‘spontaneous’ tumours, only one of the 14 papillary carcinomas and one of the four in vitro culture cell lines, derived from a papillary carcinoma, presented a NTRK1 rearrangement also with the TPM3 gene. Twenty-five of this series of radiation-associated tumours were previously studied for the ras and RET/PTC oncogenes. In conclusion, our data: (a) show that the overall frequency of NTRK1 rearrangements is similar between radiation-associated (2/31: 6%) and ‘spontaneous’ epithelial thyroid tumours (2/32: 6%). The frequency, if we consider exclusively the papillary carcinomas, is in both cases 12%; (b) show that the TRK oncogene plays a role in the development of a minority of radiation-associated papillary thyroid carcinomas but not in adenomas; and (c) confirm that RET/PTC rearrangements are the major genetic alteration associated with ionizing radiation-induced thyroid tumorigenesis. © 2000 Cancer Research Campaig

    The mammals of Angola

    Get PDF
    Scientific investigations on the mammals of Angola started over 150 years ago, but information remains scarce and scattered, with only one recent published account. Here we provide a synthesis of the mammals of Angola based on a thorough survey of primary and grey literature, as well as recent unpublished records. We present a short history of mammal research, and provide brief information on each species known to occur in the country. Particular attention is given to endemic and near endemic species. We also provide a zoogeographic outline and information on the conservation of Angolan mammals. We found confirmed records for 291 native species, most of which from the orders Rodentia (85), Chiroptera (73), Carnivora (39), and Cetartiodactyla (33). There is a large number of endemic and near endemic species, most of which are rodents or bats. The large diversity of species is favoured by the wide range of habitats with contrasting environmental conditions, while endemism tends to be associated with unique physiographic settings such as the Angolan Escarpment. The mammal fauna of Angola includes 2 Critically Endangered, 2 Endangered, 11 Vulnerable, and 14 Near-Threatened species at the global scale. There are also 12 data deficient species, most of which are endemics or near endemics to the countryinfo:eu-repo/semantics/publishedVersio

    Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models

    Get PDF

    Role of the cAMP and MAPK pathways in the transformation of mouse 3T3 fibroblasts by a TSHR gene constitutively activated by point mutation

    No full text
    Constitutive activating mutations of the TSHR gene, have been detected in about 30 per cent of hyperfunctioning human thyroid adenomas and in a minority of differentiated thyroid carcinomas. The mutations activating the TSHR gene(s) in the thyroid carcinomas, were located at the codon 623 changing an Ala to a Ser (GCC-->TCC) or in codon 632 changing a Thr to Ala or Ile (ACC-->GCC or ACC-->ATC). In order to study if the constitutively activated TSHR gene(s) has played a role in the determination of the malignant phenotype presented by these tumors, we investigated: (1) the transforming capacity after transfection of mouse 3T3 cells, of a TSHR cDNA activated by an Ala-->Ser mutation in codon 623 or an Thr-Ile mutation in codon 632 and (2) the pathway(s) eventually responsable(s) for the malignant phenotype of the cells transformed by these constitutively activated TSHR cDNAs, Our results show that (1) the TSHRM623 or(M632) cDNAs give rise to 3T3 clones presenting a fully neoplastic phenotype (growth in agar and nude mouse tumorigenesis); this phenotype was weaker in the cells transformed by the 632 cDNA; (2) suggest that the fully transformed phenotype of our 3T3 cells, may be the consequence of the additive effect of the activation of at least two different pathways: the cAMP pathway through G(alpha s) and the Ras dependent MAPK pathway through G(beta gamma) and PI3K and (3) show that the PI3K isoform playing a key role as an effector in the MAPK pathway activation in our 3T3-transformed cells is PI3K gamma. Signaling from PI3K gamma to MAPK appears to require in our murine cellular system a tyrosine kinase (still not characterized), Shc, Grb2, Sos, Ras and Raf. It is proposed that the constitutively activated TSHR genes detected in the thyroid carcinomas, may have played an oncogenic role, participating in their development through these two pathways

    Thyrotropin receptor gene alterations in thyroid hyperfunctioning adenomas

    No full text
    Forty-four thyroid autonomously hyperfunctioning adenomas were analyzed to assess the frequency of mutations occurring in the TSH receptor (TSHR). PCR-amplified fragments encompassing the entire exon 10 of the TSHR gene were obtained from the genomic DNA extracted from the tumors and their adjacent normal tissues and were examined by direct nucleotide sequencing. Point mutations were found in 9 of the 44 adenomas examined (20%). One mutation occurred in codon 619 (Asp to Gly), four in codon 623 (three were Ala to Ser, one Ala to Val substitution), two in codon 632 (both Thr to Ile), and two in codon 633 (Asp to Tyr or His). All the alterations were located in a part of the gene coding for an area including the third intracellular loop and the sixth transmembrane domain of the TSH receptor. All mutations were somatic and heterozygotic, and none was simultaneous with alterations of ras or gsp oncogenes. Thus, our data show that in our series of 44 hyperfunctioning thyroid adenomas, a somatic mutation of the TSHR, responsible for the constitutive activation of the cAMP pathway, occurs in 20% of the tumors

    Iodide symporter gene expression in human thyroid tumors

    No full text
    Expression of the Na+/I- symporter (NIS) gene was investigated by RT- PCR in a selected series of 26 primary thyroid carcinomas (19 papillary, 5 follicular, and 2 anaplastic). Fifteen follicular adenomas (11 'cold' and 4 'hot' adenomas) were also studied. Five of 19 papillary thyroid cancer did not express NIS messenger ribonucleic acid (mRNA). In all but i follicular cancer, NIS transcript was fully detected. In anaplastic tissue, NIS mRNA was only barely detected in 1 case. All of the follicular thyroid adenomas except 1 expressed the NIS gene. In contrast, all tumors studied excluding the anaplastic histotype fully expressed thyroglobulin and thyroid peroxidase mRNA transcripts. In 2 patients, a lower expression (3- to 5-fold) of NIS mRNA was found in metastasis by dot blot analysis compared with those in both normal and primary neoplastic thyroid tissue. Four of 8 differentiated thyroid cancer patients selected for the presence of metastases with negative posttherapy 131I total body scan showed the lack of NIS gene expression in their primary cancer. This defect, at least in these cases, is a somatic and intrinsic lesion of the primary cancer cells and is not due to a dedifferentiation process in the metastatic tissue. The early detection of the loss of NIS gene expression in the primary cancer, therefore, may provide useful information for the management of differentiated thyroid cancer patients
    corecore