4,380 research outputs found
Variability of fundamental constants
If the fine structure constant is not really constant, is this due to a
variation of , , or ? It is argued that the only reasonable
conclusion is a variable speed of light.Comment: preliminary draft, comments welcom
Lorentz transformations of open systems
We consider open dynamical systems, subject to external interventions by
agents that are not completely described by the theory (classical or quantal).
These interventions are localized in regions that are relatively spacelike.
Under these circumstances, no relativistic transformation law exists that
relates the descriptions of the physical system by observers in relative
motion. Still, physical laws are the same in all Lorentz frames.Comment: Final version submitted to J. Mod. Opt. (Proc. of Gdansk conference
Nonlinear interactions with an ultrahigh flux of broadband entangled photons
We experimentally demonstrate sum-frequency generation (SFG) with entangled
photon-pairs, generating as many as 40,000 SFG photons per second, visible even
to the naked eye. The nonclassical nature of the interaction is exhibited by a
linear intensity-dependence of the nonlinear process. The key element in our
scheme is the generation of an ultrahigh flux of entangled photons while
maintaining their nonclassical properties. This is made possible by generating
the down-converted photons as broadband as possible, orders of magnitude wider
than the pump. This approach is readily applicable for other nonlinear
interactions, and may be applicable for various quantum-measurement tasks.Comment: 4 pages, 2 figures, Accepted to Phys. Rev. Let
Nonlocal effects in Fock space
If a physical system contains a single particle, and if two distant detectors
test the presence of linear superpositions of one-particle and vacuum states, a
violation of classical locality can occur. It is due to the creation of a
two-particle component by the detecting process itself.Comment: final version in PRL 74 (1995) 4571; 76 (1996) 2205 (erratum
Gravitating monopoles in SU(3) gauge theory
We consider the Einstein-Yang-Mills-Higgs equations for an SU(3) gauge group
in a spherically symmetric ansatz. Several properties of the gravitating
monopole solutions are obtained an compared with their SU(2) counterpart.Comment: 7 pages, Latex, 3 figure
Fission yeast sec3 bridges the exocyst complex to the actin cytoskeleton.
The exocyst complex tethers post-Golgi secretory vesicles to the plasma membrane prior to docking and fusion. In this study, we identify Sec3, the missing component of the Schizosaccharomyces pombe exocyst complex (SpSec3). SpSec3 shares many properties with its orthologs, and its mutants are rescued by human Sec3/EXOC1. Although involved in exocytosis, SpSec3 does not appear to mark the site of exocyst complex assembly at the plasma membrane. It does, however, mark the sites of actin cytoskeleton recruitment and controls the organization of all three yeast actin structures: the actin cables, endocytic actin patches and actomyosin ring. Specifically, SpSec3 physically interacts with For3 and sec3 mutants have no actin cables as a result of a failure to polarize this nucleating formin. SpSec3 also interacts with actin patch components and sec3 mutants have depolarized actin patches of reduced endocytic capacity. Finally, the constriction and disassembly of the cytokinetic actomyosin ring is compromised in these sec3 mutant cells. We propose that a role of SpSec3 is to spatially couple actin machineries and their independently polarized regulators. As a consequence of its dual role in secretion and actin organization, Sec3 appears as a major co-ordinator of cell morphology in fission yeast.This work was supported
by Cancer Research UK (T. T.)
A condition for any realistic theory of quantum systems
In quantum physics, the density operator completely describes the state.
Instead, in classical physics the mean value of every physical quantity is
evaluated by means of a probability distribution. We study the possibility to
describe pure quantum states and events with classical probability
distributions and conditional probabilities and prove that the distributions
can not be quadratic functions of the quantum state. Some examples are
considered. Finally, we deal with the exponential complexity problem of quantum
physics and introduce the concept of classical dimension for a quantum system
Newly-Discovered Planets Orbiting HD~5319, HD~11506, HD~75784 and HD~10442 from the N2K Consortium
Initially designed to discover short-period planets, the N2K campaign has
since evolved to discover new worlds at large separations from their host
stars. Detecting such worlds will help determine the giant planet occurrence at
semi-major axes beyond the ice line, where gas giants are thought to mostly
form. Here we report four newly-discovered gas giant planets (with minimum
masses ranging from 0.4 to 2.1 MJup) orbiting stars monitored as part of the
N2K program. Two of these planets orbit stars already known to host planets: HD
5319 and HD 11506. The remaining discoveries reside in previously-unknown
planetary systems: HD 10442 and HD 75784. The refined orbital period of the
inner planet orbiting HD 5319 is 641 days. The newly-discovered outer planet
orbits in 886 days. The large masses combined with the proximity to a 4:3 mean
motion resonance make this system a challenge to explain with current formation
and migration theories. HD 11506 has one confirmed planet, and here we confirm
a second. The outer planet has an orbital period of 1627.5 days, and the
newly-discovered inner planet orbits in 223.6 days. A planet has also been
discovered orbiting HD 75784 with an orbital period of 341.7 days. There is
evidence for a longer period signal; however, several more years of
observations are needed to put tight constraints on the Keplerian parameters
for the outer planet. Lastly, an additional planet has been detected orbiting
HD 10442 with a period of 1043 days.Comment: Accepted for publication in Ap
A Wide-Field CCD Survey for Centaurs and Kuiper Belt Objects
A modified Baker-Nunn camera was used to conduct a wide-field survey of 1428
square degrees of sky near the ecliptic in search of bright Kuiper Belt objects
and Centaurs. This area is an order of magnitude larger than any previously
published CCD survey for Centaurs and Kuiper Belt Objects. No new objects
brighter than red magnitude m=18.8 and moving at a rate 1"/hr to 20"/hr were
discovered, although one previously discovered Centaur 1997 CU26 Chariklo was
serendipitously detected. The parameters of the survey were characterized using
both visual and automated techniques. From this survey the empirical projected
surface density of Centaurs was found to be SigmaCentaur(m<18.8)=7.8(+16.0
-6.6)x10^-4 per square degree and we found a projected surface density 3sigma
upper confidence limit for Kuiper Belt objects of SigmaKBO(m< 18.8)<4.1x10^-3
per square degree. We discuss the current state of the cumulative luminosity
functions of both Centaurs and Kuiper Belt objects. Through a Monte Carlo
simulation we show that the size distribution of Centaurs is consistent with a
q=4 differential power law, similar to the size distribution of the parent
Kuiper Belt Objects. The Centaur population is of order 10^7 (radius > 1 km)
assuming a geometric albedo of 0.04. About 100 Centaurs are larger than 50 km
in radius, of which only 4 are presently known. The current total mass of the
Centaurs is 10^-4 Earth Masses. No dust clouds were detected resulting from
Kuiper Belt object collisions, placing a 3sigma upper limit <600 collisionally
produced clouds of m<18.8 per year.Comment: 13 pages, 5 figures, Accepted for Publication in A
Recommended from our members
Microscale wave breaking and air-water gas transfer
Laboratory results showing that the air-water gas transfer velocity k is correlated with mean square wave slope have been cited as evidence that a wave-related mechanism regulates k at low to moderate wind speeds [Jähne et al., 1987; Bock et al., 1999]. Csanady [1990] has modeled the effect of microscale wave breaking on air-water gas transfer with the result that k is proportional to the fractional surface area covered by surface renewal generated during the breaking process. In this report we investigate the role of microscale wave breaking in gas transfer by determining the correlation between k and AB, the fractional area coverage of microscale breaking waves. Simultaneous, colocated infrared (IR) and wave slope imagery is used to verify that AB detected using IR techniques corresponds to the fraction of surface area covered by surface renewal in the wakes of microscale breaking waves. Using measurements of k and AB made at the University of Washington wind-wave tank at wind speeds from 4.6 to 10.7 m s−1, we show that k is linearly correlated with AB, regardless of the presence of surfactants. This result is consistent with Csanady's [1990] model and implies that microscale wave breaking is likely a fundamental physical mechanism contributing to gas transfer
- …