7 research outputs found
Clinically accessible amplitude-based multiplex ddPCR assay for tryptase genotyping
Abstract Hereditary α tryptasemia (HαT) is an autosomal dominant trait characterized by increased TPSAB1 copy number (CN) encoding α-tryptase. The determination of HαT is being discussed as an important biomarker to be included in risk assessment models and future diagnostic algorithms for patients with mastocytosis and anaphylaxis. Due to the complex genetic structure at the human tryptase locus, genetic testing for tryptase gene composition is presently notably limited and infrequently pursued. This study aimed to develop, optimise and validate a multiplex droplet digital PCR (ddPCR) assay that can reliably quantify α- and ÎČ-tryptase encoding sequences in a single reaction. To optimise the ddPCR conditions and establish an amplitude-based multiplex ddPCR assay, additional primers and probes, a thermal gradient with varying annealing temperatures, different primers/probe concentrations, and various initial DNA quantities were tested. Results obtained from all 114 samples analysed using multiplex ddPCR were identical to those obtained through the use of original duplex assays. Utilizing this multiplex ddPCR assay, in contrast to conducting distinct duplex ddPCRs, presents noteworthy benefits for tryptase genotyping. These advantages encompass a substantial threefold decrease in material costs and considerable time savings. Consequently, this approach exhibits high suitability and particularly captures interest for routine clinical implementation
High burden of clonal mast cell disorders and hereditary â«â« in patients who need Hymenoptera venom immunotherapy
Background
In patients who require venom immunotherapy (VIT), there is a need to identify underlying mast cell (MC) disorders since these may affect the risk and severity of future sting reactions and the long-term effectiveness of VIT.
Methods
1319 individuals with Hymenoptera venom allergy (HVA) who needed VIT from referral centers in Slovenia, Austria, Croatia, and Poland underwent examination for KIT p.D816V in peripheral blood leukocytes (PBL) using a highly sensitive PCR test and tryptase genotyping by digital droplet PCR. We also included 183 control individuals with large local reactions (LLRs) to Hymenoptera stings and with asymptomatic sensitization to Hymenoptera venoms.
Results
285 of 1319 individuals recommended for VIT (21.6%) were positive for KIT p.D816V in PBL, preferably those who present with severe reaction (33.9% [nâ=â207 of 610] with Ring-Messmer grade 3â4 vs. 11% [nâ=â78 of 709] with Grade 1â2pâ<â.0001), whereas only 1.3% (nâ=â2 of 152) of controls with LLR and none with asymptomatic sensitization (nâ=â31) had KIT p.D816V. KIT p.D816V allelic burden was higher in those with severe reaction (median 0.018% [nâ=â207] in Grade 3â4 vs. 0.001% [nâ=â78] in Grade 1â2pâ<â.0001), and the majority had normal baseline serum tryptase levels (69% [nâ=â196 of 285]). All KIT p.D816V-positive individuals (nâ=â41) who underwent bone marrow (BM) biopsy were found to have underlying clonal diseases, principally BM mastocytosis. HαT was also associated with severe HVA and symptoms (pâ<â.01), and remarkably, 31.0% (nâ=â31 of 100) were found to have concomitant KIT p.D816V. Concomitant HαT and KIT p.D816V showed an additive effect, and having both was associated with the highest risk for severe HVA, even higher than having either HαT or KIT p.D816V alone (ORâ=â3.8pâ<â.01).
Conclusions
By employing prospective universal tryptase genotyping and examination for KIT p.D816V in PBL in large HVA populations, we have demonstrated a high burden of clonal MC disorders and HαT in patients who require VIT
Heritable risk for severe anaphylaxis associated with increased [alpha]-tryptase-encoding germline copy number at TPSAB1
Background: An elevated basal serum tryptase level is associated with severe systemic anaphylaxis, most notably caused by Hymenoptera envenomation. Although clonal mast cell disease is the culprit in some individuals, it does not fully explain this clinical association. Objective: Our aim was to determine the prevalence and associated impact of tryptase genotypes on anaphylaxis in humans. Methods: Cohorts with systemic mastocytosis (SM) and venom as well as idiopathic anaphylaxis from referral centers in Italy, Slovenia, and the United States, underwent tryptase genotyping by droplet digital PCR. Associated anaphylaxis severity (Mueller scale) was subsequently examined. Healthy volunteers and controls with nonatopic disease were recruited and tryptase was genotyped by droplet digital PCR and in silico analysis of genome sequence, respectively. The effects of pooled and recombinant human tryptases, protease activated receptor 2 agonist and antagonist peptides, and a tryptase-neutralizing mAb on human umbilical vein endothelial cell permeability were assayed using a Transwell system. Results: Hereditary [alpha]-tryptasemia (H[alpha]T)--a genetic trait caused by increased [alpha]-tryptase-encoding Tryptase-[alpha]/[beta]1 (TPSAB1) copy number resulting in elevated BST level--was common in healthy individuals (5.6% [n = 7 of 125]) and controls with nonatopic disease (5.3% [n = 21 of 398]). H[alpha]T was associated with grade IV venom anaphylaxis (relative risk = 2.0P < .05) and more prevalent in both idiopathic anaphylaxis (n = 8 of 47[17%P = .006]) and SM (n = 10 of 82 [12.2%P = .03]) relative to the controls. Among patients with SM, concomitant H[alpha]T was associated with increased risk for systemic anaphylaxis (relative risk = 9.5P = .007). In vitro, protease-activated receptor-2-dependent vascular permeability was induced by pooled mature tryptases but not [alpha]- or [beta]-tryptase homotetramers. Conclusions: Risk for severe anaphylaxis in humans is associated with inherited differences in [alpha]-tryptase-encoding copies at TPSAB1
Impact of COVID-19 infection on lung function and nutritional status amongst individuals with cystic fibrosis: A global cohort study
International audienceBackground: Factors associated with severe COVID-19 infection have been identified; however, the impact of infection on longer-term outcomes is unclear. The objective of this study was to examine the impact of COVID-19 infection on the trajectory of lung function and nutritional status in people with cystic fibrosis (pwCF).Methods: This is a retrospective global cohort study of pwCF who had confirmed COVID-19 infection diagnosed between January 1, 2020 and December 31, 2021. Forced expiratory volume in one second percent predicted (ppFEV 1 ) and body mass index (BMI) twelve months prior to and following a diagnosis of COVID-19 were recorded. Change in mean ppFEV 1 and BMI were compared using a t-test. A linear mixed-effects model was used to estimate change over time and to compare the rate of change before and after infection.Results: A total of 6,500 cases of COVID-19 in pwCF from 33 countries were included for analysis. The mean difference in ppFEV 1 pre-and post-infection was 1.4 %, (95 % CI 1.1, 1.7). In those not on modulators, the difference in rate of change pre-and post-infection was 1.34 %, (95 % CI -0.88, 3.56) per year (p = 0.24) and -0.74 % (-1.89, 0.41) per year (p = 0.21) for those on elexacaftor/tezacaftor/ivacaftor. No clinically significant change was noted in BMI or BMI percentile before and after COVID-19 infection.Conclusions: No clinically meaningful impact on lung function and BMI trajectory in the year following infection with COVID-19 was identified. This work highlights the ability of the global CF community to unify and address critical issues facing pwCF