76 research outputs found

    Velocity resolved [CII], [CI], and CO observations of the N159 star-forming region in the Large Magellanic Cloud: a complex velocity structure and variation of the column densities

    Full text link
    The [CII]158um line is one of the dominant cooling lines in star-forming active regions. The commonly assumed clumpy UV-penetrated cloud models predict a [CII] line profile similar to that of CO. However, recent spectral-resolved observations show that they are often very different, indicating a more complex origin of the line emission including the dynamics of the source region. The aim of our study is to investigate the physical properties of the star-forming ISM in the Large Magellanic Cloud (LMC) by separating the origin of the emission lines spatially and spectrally. In this paper, we focus on the spectral characteristics and the origin of the emission lines, and the phases of carbon-bearing species in the N159 star-forming region in the LMC. We mapped a 4'x(3-4)' region in N159 in [CII]158um and [NII]205um with the GREAT on board SOFIA, and in CO(3-2), (4-3), (6-5), 13CO(3-2), and [CI]3P1-3P0 and 3P2-3P1 with APEX. The emission of all transitions observed shows a large variation in the line profiles across the map and between the different species. At most positions the [CII] emission line profile is substantially wider than that of CO and [CI]. We estimated the fraction of the [CII] integrated line emission that cannot be fitted by the CO line profile to be 20%-50%. We derived the relative contribution from C+, C, and CO to the column density in each velocity bin. The contribution from C+ dominates the velocity range far from the velocities traced by the dense molecular gas, and the region located between the CO cores of N159 W and E. We estimate the contribution of the ionized gas to the [CII] emission using the ratio to the [NII] emission to be < 19% to the [CII] emission at its peak position, and <15% over the whole observed region. Using the integrated line intensities, we present the spatial distribution of I([CII])/I(FIR). (abridged for arXiv)Comment: 16 pages with 14 figures, accepted for publication in A&

    GREAT/SOFIA atmospheric calibration

    Full text link
    The GREAT observations need frequency-selective calibration across the passband for the residual atmospheric opacity at flight altitude. At these altitudes the atmospheric opacity has both narrow and broad spectral features. To determine the atmospheric transmission at high spectral resolution, GREAT compares the observed atmospheric emission with atmospheric model predictions, and therefore depends on the validity of the atmospheric models. We discusse the problems identified in this comparison with respect to the observed data and the models, and describe the strategy used to calibrate the science data from GREAT/SOFIA during the first observing periods.Comment: 14 pages, 4 figure

    A 490 GHz planar circuit balanced Nb-Al2_\mathbf{2}O3_{\mathbf{3}}-Nb quasiparticle mixer for radio astronomy: Application to quantitative local oscillator noise determination

    Full text link
    This article presents a heterodyne experiment which uses a 380-520 GHz planar circuit balanced Nb-Al2O3\mathrm{Al_2O_3}-Nb superconductor-insulator-superconductor (SIS) quasiparticle mixer with 4-8 GHz instantaneous intermediate frequency (IF) bandwidth to quantitatively determine local oscillator (LO) noise. A balanced mixer is a unique tool to separate noise at the mixer's LO port from other noise sources. This is not possible in single-ended mixers. The antisymmetric IV characteristic of a SIS mixer further helps to simplify the measurements. The double-sideband receiver sensitivity of the balanced mixer is 2-4 times the quantum noise limit hν/kBh\nu/k_B over the measured frequencies with a maximum LO noise rejection of 15 dB. This work presents independent measurements with three different LO sources that produce the reference frequency but also an amount of near-carrier noise power which is quantified in the experiment as a function of the LO and IF frequency in terms of an equivalent noise temperature TLOT_{LO}. In a second experiment we use only one of two SIS mixers of the balanced mixer chip, in order to verify the influence of near-carrier LO noise power on a single-ended heterodyne mixer measurement. We find an IF frequency dependence of near-carrier LO noise power. The frequency-resolved IF noise temperature slope is flat or slightly negative for the single-ended mixer. This is in contrast to the IF slope of the balanced mixer itself which is positive due to the expected IF roll-off of the mixer. This indicates a higher noise level closer to the LO's carrier frequency. Our findings imply that near-carrier LO noise has the largest impact on the sensitivity of a receiver system which uses mixers with a low IF band, for example superconducting hot-electron bolometer (HEB) mixers.Comment: 13 pages, 8 figures, 2 tables, see manuscript for complete abstrac

    Structure of the W3A Low Density Foreground Region

    Full text link
    We present analysis of OI 63 micron and CO JJ = 5-4 and 8-7 multi-position data in the W3A region and use it to develop a model for the extended low-density foreground gas that produces absorption features in the OI and JJ = 5-4 CO lines. We employ the extinction to the exciting stars of the background HII region to constrain the total column density of the foreground gas. We have used the Meudon PDR code to model the physical conditions and chemistry in the region employing a two-component model with high density layer near the HII region responsible for the fine structure line emission, and an extended low density foreground layer. The best-fitting total proton density, constrained largely by the CO lines, is nn(H) = 250 cm3^{-3} in the foreground gas, and 5×\times105^5 cm3^{-3} in the material near the HII region. The absorption is distributed over the region mapped in W3A, and is not restricted to the foreground of either the embedded exciting stars of the HII region or the protostar W3 IRS5. The low-density material associated with regions of massive star formation, based on an earlier study by Goldsmith et al. (2021), is quite common, and we now see that it is extended over a significant portion of W3A. It thus should be included in modeling of fine structure line emission, including interpreting low-velocity resolution observations made with incoherent spectrometer systems, in order to use these lines as accurate tracers of massive star formation

    CCAT-prime: a novel telescope for submillimeter astronomy

    Full text link
    The CCAT-prime telescope is a 6-meter aperture, crossed-Dragone telescope, designed for millimeter and sub-millimeter wavelength observations. It will be located at an altitude of 5600 meters, just below the summit of Cerro Chajnantor in the high Atacama region of Chile. The telescope's unobscured optics deliver a field of view of almost 8 degrees over a large, flat focal plane, enabling it to accommodate current and future instrumentation fielding >100k diffraction-limited beams for wavelengths less than a millimeter. The mount is a novel design with the aluminum-tiled mirrors nested inside the telescope structure. The elevation housing has an integrated shutter that can enclose the mirrors, protecting them from inclement weather. The telescope is designed to co-host multiple instruments over its nominal 15 year lifetime. It will be operated remotely, requiring minimum maintenance and on-site activities due to the harsh working conditions on the mountain. The design utilizes nickel-iron alloy (Invar) and carbon-fiber-reinforced polymer (CFRP) materials in the mirror support structure, achieving a relatively temperature-insensitive mount. We discuss requirements, specifications, critical design elements, and the expected performance of the CCAT-prime telescope. The telescope is being built by CCAT Observatory, Inc., a corporation formed by an international partnership of universities. More information about CCAT and the CCAT-prime telescope can be found at www.ccatobservatory.org.Comment: Event: SPIE Astronomical Telescope + Instrumentation, 2018, Austin, Texas, USA; Proceedings Volume 10700, Ground-based and Airborne Telescopes VII; 107005X (2018

    SOFIA FEEDBACK Survey: The Pillars of Creation in [C II] and Molecular Lines

    Full text link
    We investigate the physical structure and conditions of photodissociation regions (PDRs) and molecular gas within the Pillars of Creation in the Eagle Nebula using SOFIA FEEDBACK observations of the [C II] 158 micron line. These observations are velocity resolved to 0.5 km s1^{-1} and are analyzed alongside a collection of complimentary data with similar spatial and spectral resolution: the [O I] 63 micron line, also observed with SOFIA, and rotational lines of CO, HCN, HCO+^{+}, CS, and N2_2H+^{+}. Using the superb spectral resolution of SOFIA, APEX, CARMA, and BIMA, we reveal the relationships between the warm PDR and cool molecular gas layers in context of the Pillars' kinematic structure. We assemble a geometric picture of the Pillars and their surroundings informed by illumination patterns and kinematic relationships and derive physical conditions in the PDRs associated with the Pillars. We estimate an average molecular gas density nH21.3×105n_{{\rm H}_2} \sim 1.3 \times 10^5 cm3^{-3} and an average atomic gas density nH1.8×104n_{\rm H} \sim 1.8 \times 10^4 cm3^{-3} and infer that the ionized, atomic, and molecular phases are in pressure equilibrium if the atomic gas is magnetically supported. We find pillar masses of 103, 78, 103, and 18 solar masses for P1a, P1b, P2, and P3 respectively, and evaporation times of \sim1-2 Myr. The dense clumps at the tops of the pillars are currently supported by the magnetic field. Our analysis suggests that ambipolar diffusion is rapid and these clumps are likely to collapse within their photoevaporation timescales.Comment: 42 pages, 16 figures. Accepted for publication in The Astronomical Journa

    First detection of the atomic O18 isotope in the mesosphere and lower thermosphere of Earth

    Get PDF
    In the lower atmosphere of Earth, oxygen contains a higher fraction of the heavy O18 isotope than ocean water does (Dole effect). This isotopic enrichment is a signature of biological activity, set by the equilibrium between oxygenic photosynthesis and respiratory metabolisms in terrestrial and oceanic ecosystems. While the mixing between stratospheric and tropospheric oxygen leads to a slow isotopic homogenization, little is known about the isotopic oxygen enrichment in the mesosphere and thermosphere of Earth. In situ measurements from rocket-borne air samplers are limited to altitudes below the mesopause, while higher layers have only been accessible through the analysis of the oxidation of ancient cosmic spherules. Here we report the detection of the far-infrared fine-structure lines (3P1<-3P2 and 3P0<-3P1) of O18 in absorption against the Moon, and determine the O16/O18 ratio in atomic oxygen from the mesosphere and lower thermosphere in absorption. After correcting for isotopic exchange between atomic and molecular oxygen, our values for the bulk O16/O18 ratio of 468 and 382 in February and November 2021, respectively, fall significantly below that found in solar wind samples (530±2), and encompass, within uncertainties, the corresponding ratios pertaining to the Dole effect in the troposphere (487), and those found in stratospheric ozone (429 to 466). We show that with existing technology, future, more sensitive measurements will allow us to monitor deviations from isotopic homogeneity in the mesosphere and lower thermosphere of Earth by remote sensing. We demonstrate that the collisional excitation of the fine-structure levels of the P3 ground-state triplet of O18 may compete with isotopic exchange reactions, implying a deviation from the Boltzmann distribution that would be established under local thermodynamic equilibrium

    The Antarctic Submillimeter Telescope and Remote Observatory (AST/RO)

    Get PDF
    AST/RO, a 1.7 m diameter telescope for astronomy and aeronomy studies at wavelengths between 200 and 2000 microns, was installed at the South Pole during the 1994-1995 Austral summer. The telescope operates continuously through the Austral winter, and is being used primarily for spectroscopic studies of neutral atomic carbon and carbon monoxide in the interstellar medium of the Milky Way and the Magellanic Clouds. The South Pole environment is unique among observatory sites for unusually low wind speeds, low absolute humidity, and the consistent clarity of the submillimeter sky. Four heterodyne receivers, an array receiver, three acousto-optical spectrometers, and an array spectrometer are installed. A Fabry-Perot spectrometer using a bolometric array and a Terahertz receiver are in development. Telescope pointing, focus, and calibration methods as well as the unique working environment and logistical requirements of the South Pole are described.Comment: 57 pages, 15 figures. Submitted to PAS
    corecore