29 research outputs found

    Cardiac and renal function in a large cohort of amateur marathon runners

    Get PDF
    Background Participation of amateur runners in endurance races continues to increase. Previous studies of marathon runners have raised concerns about exercise-induced myocardial and renal dysfunction and damage. In our pooled analysis, we aimed to characterize changes of cardiac and renal function after marathon running in a large cohort of mostly elderly amateur marathon runners. Methods A total of 167 participants of the BERLIN-MARATHON (female n = 89, male n = 78; age = 50.3 ± 11.4 years) were included and cardiac and renal function was analyzed prior to, immediately after and 2 weeks following the race by echocardiography and blood tests (including cardiac troponin T, NT- proBNP and cystatin C). Results Among the runners, 58% exhibited a significant increase in cardiac biomarkers after completion of the marathon. Overall, the changes in echocardiographic parameters for systolic or diastolic left and right ventricular function did not indicate relevant myocardial dysfunction. Notably, 30% of all participants showed >25% decrease in cystatin C-estimated glomerular filtration rate (GFR) from baseline directly after the marathon; in 8%, we observed a decline of more than 50%. All cardiac and renal parameters returned to baseline ranges within 2 weeks after the marathon. Conclusions The increase in cardiac biomarkers after completing a marathon was not accompanied by relevant cardiac dysfunction as assessed by echocardiography. After the race, a high proportion of runners experienced a decrease in cystatin C-estimated GFR, which is suggestive of transient, exercise-related alteration of renal function. However, we did not observe persistent detrimental effects on renal function

    results of the prospective observational Berlin Beat of Running study

    Get PDF
    Objectives: While regular physical exercise has many health benefits, strenuous physical exercise may have a negative impact on cardiac function. The ‘Berlin Beat of Running’ study focused on feasibility and diagnostic value of continuous ECG monitoring in recreational endurance athletes during a marathon race. We hypothesised that cardiac arrhythmias and especially atrial fibrillation are frequently found in a cohort of recreational endurance athletes. The main secondary hypothesis was that pathological laboratory findings in these athletes are (in part) associated with cardiac arrhythmias. Design: Prospective observational cohort study including healthy volunteers. Setting and participants: One hundred and nine experienced marathon runners wore a portable ECG recorder during a marathon race in Berlin, Germany. Athletes underwent blood tests 2–3 days prior, directly after and 1–2 days after the race. Results: Overall, 108 athletes (median 48 years (IQR 45–53), 24% women) completed the marathon in 249±43 min. Blinded ECG analysis revealed abnormal findings during the marathon in 18 (16.8%) athletes. Ten (9.3%) athletes had at least one episode of non-sustained ventricular tachycardia, one of whom had atrial fibrillation; eight (7.5%) individuals showed transient ST-T-segment deviations. Abnormal ECG findings were associated with advanced age (OR 1.11 per year, 95% CI 1.01 to 1.23), while sex and cardiovascular risk profile had no impact. Directly after the race, high-sensitive troponin T was elevated in 18 (16.7%) athletes and associated with ST-T-segment deviation (OR 9.9, 95% CI 1.9 to 51.5), while age, sex and cardiovascular risk profile had no impact. Conclusions: ECG monitoring during a marathon is feasible. Abnormal ECG findings were present in every sixth athlete. Exercise-induced transient ST-T-segment deviations were associated with elevated high-sensitive troponin T (hsTnT) values. Trial registration: ClinicalTrials.gov NCT01428778; Results

    Pharmacological treatment options for mast cell activation disease

    Get PDF

    Poly-beta-hydroxy alkanoate and the support of river biofilm metabolism following radical changes in environmental conditions

    No full text
    Endogenous carbon reserves such as poly-beta-hydroxy alkanoate (PHA) can sustain microbial viability during conditions of nutrient deprivation. Microbial extracellular enzyme activities under one set of environmental conditions might be wholly inappropriate for another, and thus PHA might also serve as an energy source as the biofilm acclimates to a changed environment. In order to test this hypothesis, radical changes in environmental conditions were imposed upon river biofilms by transferring them between three rivers of acid, circum-neutral and alkaline pH. The findings supported the hypothesis; each of the transfers resulted in reduced PHA levels, while the physiology of the biofilm (metabolic activity, population density, phosphatase & glucosidase activities) acclimated to the environmental conditions of the recipient site. The greatest PHA depletion was observed when the magnitude of the imposed change resulted in an inability of phosphatase enzyme to respond to the change. The implicit greater dependence on the reserves of PHA, is similarly consistent with the hypothesis
    corecore