24 research outputs found

    Heterologous expression, purification and characterization of nitrilase from Aspergillus niger K10

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitrilases attract increasing attention due to their utility in the mild hydrolysis of nitriles. According to activity and gene screening, filamentous fungi are a rich source of nitrilases distinct in evolution from their widely examined bacterial counterparts. However, fungal nitrilases have been less explored than the bacterial ones. Nitrilases are typically heterogeneous in their quaternary structures, forming short spirals and extended filaments, these features making their structural studies difficult.</p> <p>Results</p> <p>A nitrilase gene was amplified by PCR from the cDNA library of <it>Aspergillus niger </it>K10. The PCR product was ligated into expression vectors pET-30(+) and pRSET B to construct plasmids pOK101 and pOK102, respectively. The recombinant nitrilase (Nit-ANigRec) expressed in <it>Escherichia coli </it>BL21-Gold(DE3)(pOK101/pTf16) was purified with an about 2-fold increase in specific activity and 35% yield. The apparent subunit size was 42.7 kDa, which is approx. 4 kDa higher than that of the enzyme isolated from the native organism (Nit-ANigWT), indicating post-translational cleavage in the enzyme's native environment. Mass spectrometry analysis showed that a C-terminal peptide (Val<sub>327 </sub>- Asn<sub>356</sub>) was present in Nit-ANigRec but missing in Nit-ANigWT and Asp<sub>298</sub>-Val<sub>313 </sub>peptide was shortened to Asp<sub>298</sub>-Arg<sub>310 </sub>in Nit-ANigWT. The latter enzyme was thus truncated by 46 amino acids. Enzymes Nit-ANigRec and Nit-ANigWT differed in substrate specificity, acid/amide ratio, reaction optima and stability. Refolded recombinant enzyme stored for one month at 4°C was fractionated by gel filtration, and fractions were examined by electron microscopy. The late fractions were further analyzed by analytical centrifugation and dynamic light scattering, and shown to consist of a rather homogeneous protein species composed of 12-16 subunits. This hypothesis was consistent with electron microscopy and our modelling of the multimeric nitrilase, which supports an arrangement of dimers into helical segments as a plausible structural solution.</p> <p>Conclusions</p> <p>The nitrilase from <it>Aspergillus niger </it>K10 is highly homologous (≥86%) with proteins deduced from gene sequencing in <it>Aspergillus </it>and <it>Penicillium </it>genera. As the first of these proteins, it was shown to exhibit nitrilase activity towards organic nitriles. The comparison of the Nit-ANigRec and Nit-ANigWT suggested that the catalytic properties of nitrilases may be changed due to missing posttranslational cleavage of the former enzyme. Nit-ANigRec exhibits a lower tendency to form filaments and, moreover, the sample homogeneity can be further improved by <it>in vitro </it>protein refolding. The homogeneous protein species consisting of short spirals is expected to be more suitable for structural studies.</p

    DNA sequencing

    No full text
    Performance of scientific and technical work largely consisting of DNA sequencing according to client specification. In adition all DNA analysis necessery for DNA sequencing are carried out

    DNA sequencing

    No full text
    Performance of scientific and technical work largely consisting of DNA sequencing according to client specification. In adition all DNA analysis necessery for DNA sequencing are carried out

    DNA sequencing

    No full text
    Performance of scientific and technical work largely consisting of DNA sequencing according to client specification. In adition all DNA analysis necessery for DNA sequencing are carried out

    2 DNA sequencing

    No full text
    Performance of scientific and technical work largely consisting of DNA sequencing according to client specification. In adition all DNA analysis necessery for DNA sequencing are carried out

    Occurrence of Two 5-Aminolevulinate Biosynthetic Pathways in Streptomyces nodosus subsp. asukaensis Is Linked with the Production of Asukamycin

    No full text
    We report the results of cloning genes for two key biosynthetic enzymes of different 5-aminolevulinic acid (ALA) biosynthetic routes from Streptomyces. The genes encode the glutamyl-tRNA(Glu) reductase (GluTR) of the C(5) pathway and the ALA synthase (ALAS) of the Shemin pathway. While Streptomyces coelicolor A3(2) synthesizes ALA via the C(5) route, both pathways are operational in Streptomyces nodosus subsp. asukaensis, a producer of asukamycin. In this strain, the C(5) route produces ALA for tetrapyrrole biosynthesis; the ALA formed by the Shemin pathway serves as a precursor of the 2-amino-3-hydroxycyclopent-2-enone moiety (C(5)N unit), an antibiotic component. The growth of S. nodosus and S. coelicolor strains deficient in the GluTR genes (gtr) is strictly dependent on ALA or heme supplementation, whereas the defect in the ALAS-encoding gene (hemA-asuA) abolishes the asukamycin production in S. nodosus. The recombinant hemA-asuA gene was expressed in Escherichia coli and in Streptomyces, and the encoded enzyme activity was demonstrated both in vivo and in vitro. The hemA-asuA gene is situated within a putative cluster of asukamycin biosynthetic genes. This is the first report about the cloning of genes for two different ALA biosynthetic routes from a single bacterium
    corecore