7,305 research outputs found

    Entropic Effects in the Very Low Temperature Regime of Diluted Ising Spin Glasses with Discrete Couplings

    Full text link
    We study link-diluted ±J\pm J Ising spin glass models on the hierarchical lattice and on a three-dimensional lattice close to the percolation threshold. We show that previously computed zero temperature fixed points are unstable with respect to temperature perturbations and do not belong to any critical line in the dilution-temperature plane. We discuss implications of the presence of such spurious unstable fixed points on the use of optimization algorithms, and we show how entropic effects should be taken into account to obtain the right physical behavior and critical points.Comment: 4 pages, 4 figures. A major typo error in formula (8) has been correcte

    Tailoring superradiance to design artificial quantum systems

    Full text link
    Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This "reverse engineering" of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.Comment: 6 pages + supplemental materia

    Flow dependence of high pTp_T parton energy loss in heavy-ion collisions

    Full text link
    The measured transverse momentum spectra and HBT correlations of bulk (i.e. low pTp_T) matter can be well explained by assuming that the soft sector of particles produced in ultrarelativistic heavy-ion collisions is (approximately) thermalized and undergoes collective accelerated expansion in both longitudinal and transverse direction. However, this implies that bulk matter will have a non-vanishing flow component transverse to the trajectory of a high pTp_T partonic jets. In general, this will increase the energy loss experienced by the jet parton and modify the shape of the jet cone. In this paper, we present a systematic study of the magnitude of the additional energy loss induced by flow under realistic assumptions for the medium evolution. We argue that a perturbative QGP description may be sufficient for the measured RAAR_{AA} if flow during the medium evolution is taken into account properly

    Yoctosecond photon pulses from quark-gluon plasmas

    Full text link
    Present ultra-fast laser optics is at the frontier between atto- and zeptosecond photon pulses, giving rise to unprecedented applications. We show that high-energetic photon pulses down to the yoctosecond timescale can be produced in heavy ion collisions. We focus on photons produced during the initial phase of the expanding quark-gluon plasma. We study how the time evolution and properties of the plasma may influence the duration and shape of the photon pulse. Prospects for achieving double peak structures suitable for pump-probe experiments at the yoctosecond timescale are discussed.Comment: 4 pages, 2 figures; final version as accepted by PR

    Streaking At High Energies With Electrons And Positrons

    Full text link
    State-of-the-art attosecond metrology deals with the detection and characterization of photon pulses with typical energies up to the hundreds of eV and time resolution of several tens of attoseconds. Such short pulses are used for example to control the motion of electrons on the atomic scale or to measure inner-shell atomic dynamics. The next challenge of time-resolving the inner-nuclear dynamics, transient meson states and resonances requires photon pulses below attosecond duration and with energies exceeding the MeV scale. Here we discuss a detection scheme for time-resolving high-energy gamma ray pulses down to the zeptosecond timescale. The scheme is based on the concept of attosecond streak imaging, but instead of conversion of photons into electrons in a nonlinear medium, the high-energy process of electron-positron pair creation is utilized. These pairs are produced in vacuum through the collision of a test pulse to be characterized with an intense laser pulse, and they acquire additional energy and momentum depending on their phase in the streaking pulse at the moment of production. A coincidence measurement of the electron and positron momenta after the interaction provides information on the pair production phase within the streaking pulse. We examine the limitations imposed by quantum radiation reaction in multiphoton Compton scattering on this detection scheme, and discuss other necessary conditions to render the scheme feasible in the upcoming Extreme Light Infrastructure (ELI) laser facility.Comment: 6 pages, 2 figures, contribution to the AIP proceedings of "Light at Extreme Intensities" (LEI 2011), Szeged, Hungary, Nov 14-18, 201

    Revealed Price Preference: Theory and Empirical Analysis

    Full text link
    With the aim of determining the welfare implications of price change in consumption data, we introduce a revealed preference relation over prices. We show that an absence of cycles in this preference relation characterizes a model of demand where consumers trade-off the utility of consumption against the disutility of expenditure. This model is appropriate whenever a consumer's demand over a {\em strict} subset of all available goods is being analyzed. For the random utility extension of the model, we devise nonparametric statistical procedures for testing and welfare comparisons. The latter requires the development of novel tests of linear hypotheses for partially identified parameters. In doing so, we provide new algorithms for the calculation and statistical inference in nonparametric counterfactual analysis for a general partially identified model. Our applications on national household expenditure data provide support for the model and yield informative bounds concerning welfare rankings across different prices.Comment: 53 page
    • …
    corecore