98 research outputs found

    Nonadiabatic Dynamics of Ultracold Fermions in Optical Superlattices

    Full text link
    We study the time-dependent dynamical properties of two-component ultracold fermions in a one-dimensional optical superlattice by applying the adaptive time-dependent density matrix renormalization group to a repulsive Hubbard model with an alternating superlattice potential. We clarify how the time evolution of local quantities occurs when the superlattice potential is suddenly changed to a normal one. For a Mott-type insulating state at quarter filling, the time evolution exhibits a profile similar to that expected for bosonic atoms, where correlation effects are less important. On the other hand, for a band-type insulating state at half filling, the strong repulsive interaction induces an unusual pairing of fermions, resulting in some striking properties in time evolution, such as a paired fermion co-tunneling process and the suppression of local spin moments. We further address the effect of a confining potential, which causes spatial confinement of the paired fermions.Comment: 4 pages, 5 figure

    An SU(N) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling

    Get PDF
    The Hubbard model, containing only the minimum ingredients of nearest neighbor hopping and on-site interaction for correlated electrons, has succeeded in accounting for diverse phenomena observed in solid-state materials. One of the interesting extensions is to enlarge its spin symmetry to SU(N>2), which is closely related to systems with orbital degeneracy. Here we report a successful formation of the SU(6) symmetric Mott insulator state with an atomic Fermi gas of ytterbium (173Yb) in a three-dimensional optical lattice. Besides the suppression of compressibility and the existence of charge excitation gap which characterize a Mott insulating phase, we reveal an important difference between the cases of SU(6) and SU(2) in the achievable temperature as the consequence of different entropy carried by an isolated spin. This is analogous to Pomeranchuk cooling in solid 3He and will be helpful for investigating exotic quantum phases of SU(N) Hubbard system at extremely low temperatures.Comment: 20 pages, 6 figures, to appear in Nature Physic

    Reduction of anomalous heating in an in-situ-cleaned ion trap

    Full text link
    Anomalous heating of trapped atomic ions is a major obstacle to their use as quantum bits in a scalable quantum computer. The physical origin of this heating is not fully understood, but experimental evidence suggests that it is caused by electric-field noise emanating from the surface of the trap electrodes. In this study, we have investigated the role that adsorbates on the electrodes play by identifying contaminant overlayers, developing an in situ argon-ion beam cleaning procedure, and measuring ion heating rates before and after cleaning the trap electrodes' surfaces. We find a reduction of two orders of magnitude in heating rate after cleaning.Comment: 7 pages, 1 figur

    Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices

    Full text link
    Orbital physics plays a significant role for a vast number of important phenomena in complex condensed matter systems such as high-Tc_c superconductivity and unconventional magnetism. In contrast, phenomena in superfluids -- especially in ultracold quantum gases -- are commonly well described by the lowest orbital and a real order parameter. Here, we report on the observation of a novel multi-orbital superfluid phase with a {\it complex} order parameter in binary spin mixtures. In this unconventional superfluid, the local phase angle of the complex order parameter is continuously twisted between neighboring lattice sites. The nature of this twisted superfluid quantum phase is an interaction-induced admixture of the p-orbital favored by the graphene-like band structure of the hexagonal optical lattice used in the experiment. We observe a second-order quantum phase transition between the normal superfluid (NSF) and the twisted superfluid phase (TSF) which is accompanied by a symmetry breaking in momentum space. The experimental results are consistent with calculated phase diagrams and reveal fundamentally new aspects of orbital superfluidity in quantum gas mixtures. Our studies might bridge the gap between conventional superfluidity and complex phenomena of orbital physics.Comment: 5 pages, 4 figure

    Single-Atom Resolved Fluorescence Imaging of an Atomic Mott Insulator

    Get PDF
    The reliable detection of single quantum particles has revolutionized the field of quantum optics and quantum information processing. For several years, researchers have aspired to extend such detection possibilities to larger scale strongly correlated quantum systems, in order to record in-situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report on fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution. From our images, we fully reconstruct the atom distribution on the lattice and identify individual excitations with high fidelity. A comparison of the radial density and variance distributions with theory provides a precise in-situ temperature and entropy measurement from single images. We observe Mott-insulating plateaus with near zero entropy and clearly resolve the high entropy rings separating them although their width is of the order of only a single lattice site. Furthermore, we show how a Mott insulator melts for increasing temperatures due to a proliferation of local defects. Our experiments open a new avenue for the manipulation and analysis of strongly interacting quantum gases on a lattice, as well as for quantum information processing with ultracold atoms. Using the high spatial resolution, it is now possible to directly address individual lattice sites. One could, e.g., introduce local perturbations or access regions of high entropy, a crucial requirement for the implementation of novel cooling schemes for atoms on a lattice

    Thermometry with spin-dependent lattices

    Full text link
    We propose a method for measuring the temperature of strongly correlated phases of ultracold atom gases confined in spin-dependent optical lattices. In this technique, a small number of "impurity" atoms--trapped in a state that does not experience the lattice potential--are in thermal contact with atoms bound to the lattice. The impurity serves as a thermometer for the system because its temperature can be straightforwardly measured using time-of-flight expansion velocity. This technique may be useful for resolving many open questions regarding thermalization in these isolated systems. We discuss the theory behind this method and demonstrate proof-of-principle experiments, including the first realization of a 3D spin-dependent lattice in the strongly correlated regime.Comment: 22 pages, 8 figures v2: Several references added; Section on heating rates updated to include dipole fluctuation terms; Section added on the limitations of the proposed method. To appear in New Journal of Physic

    Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice

    Full text link
    Dirac points lie at the heart of many fascinating phenomena in condensed matter physics, from massless electrons in graphene to the emergence of conducting edge states in topological insulators [1, 2]. At a Dirac point, two energy bands intersect linearly and the particles behave as relativistic Dirac fermions. In solids, the rigid structure of the material sets the mass and velocity of the particles, as well as their interactions. A different, highly flexible approach is to create model systems using fermionic atoms trapped in the periodic potential of interfering laser beams, a method which so far has only been applied to explore simple lattice structures [3, 4]. Here we report on the creation of Dirac points with adjustable properties in a tunable honeycomb optical lattice. Using momentum-resolved interband transitions, we observe a minimum band gap inside the Brillouin zone at the position of the Dirac points. We exploit the unique tunability of our lattice potential to adjust the effective mass of the Dirac fermions by breaking inversion symmetry. Moreover, changing the lattice anisotropy allows us to move the position of the Dirac points inside the Brillouin zone. When increasing the anisotropy beyond a critical limit, the two Dirac points merge and annihilate each other - a situation which has recently attracted considerable theoretical interest [5-9], but seems extremely challenging to observe in solids [10]. We map out this topological transition in lattice parameter space and find excellent agreement with ab initio calculations. Our results not only pave the way to model materials where the topology of the band structure plays a crucial role, but also provide an avenue to explore many-body phases resulting from the interplay of complex lattice geometries with interactions [11, 12]
    corecore