2,715 research outputs found

    Spin glass behavior in an interacting gamma-Fe2O3 nanoparticle system

    Get PDF
    In this paper we investigate the superspin glass behavior of a concentrated assembly of interacting maghemite nanoparticles and compare it to that of canonical atomic spin glass systems. ac versus temperature and frequency measurements show evidence of a superspin glass transition taking place at low temperature. In order to fully characterize the superspin glass phase, the aging behavior of both the thermo-remanent magnetization (TRM) and ac susceptibility has been investigated. It is shown that the scaling laws obeyed by superspin glasses and atomic spin glasses are essentially the same, after subtraction of a superparamagnetic contribution from the superspin glass response functions. Finally, we discuss a possible origin of this superparamagnetic contribution in terms of dilute spin glass models

    Comment on "Memory Effects in an Interacting Magnetic Nanoparticle System"

    Get PDF
    In Phys. Rev. Lett. 91 167206 (2003), Sun et al. study memory effects in an interacting nanoparticle system with specific temperature and field protocols. The authors claim that the observed memory effects originate from spin-glass dynamics and that the results are consistent with the hierarchical picture of the spin-glass phase. In this comment, we argue their claims premature by demonstrating that all their experimental curves can be reproduced qualitatively using only a simplified model of isolated nanoparticles with a temperature dependent distribution of relaxation times.Comment: 1 page, 2 figures, slightly changed content, the parameters involved in Figs. 1 and 2 are changed a little for a semi-quantitative comparision with experimental result

    Dynamical breakdown of the Ising spin-glass order under a magnetic field

    Full text link
    The dynamical magnetic properties of an Ising spin glass Fe0.55_{0.55}Mn0.45_{0.45}TiO3_3 are studied under various magnetic fields. Having determined the temperature and static field dependent relaxation time τ(T;H)\tau(T;H) from ac magnetization measurements under a dc bias field by a general method, we first demonstrate that these data provide evidence for a spin-glass (SG) phase transition only in zero field. We next argue that the data τ(T;H)\tau(T;H) of finite HH can be well interpreted by the droplet theory which predicts the absence of a SG phase transition in finite fields.Comment: 4 pages, 5 figure

    Electron Correlation Driven Heavy-Fermion Formation in LiV2O4

    Full text link
    Optical reflectivity measurements were performed on a single crystal of the d-electron heavy-fermion (HF) metal LiV2O4. The results evidence the highly incoherent character of the charge dynamics for all temperatures above T^* \approx 20 K. The spectral weight of the optical conductivity is redistributed over extremely broad energy scales (~ 5 eV) as the quantum coherence of the charge carriers is recovered. This wide redistribution is, in sharp contrast to f-electron Kondo lattice HF systems, characteristic of a metallic system close to a correlation driven insulating state. Our results thus reveal that strong electronic correlation effects dominate the low-energy charge dynamics and heavy quasiparticle formation in LiV2O4. We propose the geometrical frustration, which limits the extension of charge and spin ordering, as an additional key ingredient of the low-temperature heavy-fermion formation in this system.Comment: 5 pages, 3 figure

    PMH56 A PATIENT PERSPECTIVE ON SIDE EFFECTS OF ANTIPSYCHOTIC THERAPY: THE TOOL INSTRUMENT

    Get PDF

    PMH58 TOOL: MULTI-ATTRIBUTE UTILITY FUNCTION REFLECTING PATIENT EXPERIENCE OF SIDE EFFECTS TO ANTIPSYCHOTIC THERAPY

    Get PDF

    Absence of Conventional Spin-Glass Transition in the Ising Dipolar System LiHo_xY_{1-x}F_4

    Full text link
    The magnetic properties of single crystals of LiHo_xY_{1-x}F_4 with x=16.5% and x=4.5% were recorded down to 35 mK using a micro-SQUID magnetometer. While this system is considered as the archetypal quantum spin glass, the detailed analysis of our magnetization data indicates the absence of a phase transition, not only in a transverse applied magnetic field, but also without field. A zero-Kelvin phase transition is also unlikely, as the magnetization seems to follow a non-critical exponential dependence on the temperature. Our analysis thus unmasks the true, short-ranged nature of the magnetic properties of the LiHo_xY_{1-x}F_4 system, validating recent theoretical investigations suggesting the lack of phase transition in this system.Comment: 5 pages, 4 figure
    corecore