2 research outputs found

    Role of oxygen vacancy defect states in the n-type conduction of 尾-Ga[sub 2]O[sub 3]

    Get PDF
    Based on semiempirical quantum-chemical calculations, the electronic band structure of 尾-Ga2O3 is presented and the formation and properties of oxygen vacancies are analyzed. The equilibrium geometries and formation energies of neutral and doubly ionized vacancies were calculated. Using the calculated donor level positions of the vacancies, the high temperature n-type conduction is explained. The vacancy concentration is obtained by fitting to the experimental resistivity and electron mobility

    Recombination with larger than bandgap energy at centres on the surface of silicon microstructures

    No full text
    Previously it has been shown that the correlation between shifts in luminescence and Raman peak positions in various porous silicon samples cannot be explained by the size effect of the silicon microstructures, as postulated by the (physical) quantum confinement model. It is also unlikely that siloxene occurs in significant quantities in porous Si. In this contribution, a possibility is presented for radiative recombination of carriers on the surface of a silicon microstructure, to explain strong visible luminescence in porous silicon. Nanometre-size structures on the surfaces of silicon microcrystallites introduce localized resonances into the (bulk-like) bands of the crystallites, giving rise to larger-than-bandgap transitions. These surface structures act as electron- and hole-traps and, due to localization of the carriers, recombination is possible neglecting momentum selection rules. Results of semi-empirical calculations on model structures are presented
    corecore