49 research outputs found

    Production Engineering - Personnel Education for the Needs of Market Economy

    Get PDF
    Production Engineering is the youngest, but fast developing scientific discipline in Poland. Its field of interests fully corresponds to the formerly created “Management and Production Engineering” study dominant. Production Engineering covers issues such as planning, designing, implementing and management of production and logistic systems and maintenance of their functioning. These systems are understood as socio – technical constructs that aim to integrate the employees, information, energy, materials, tools and processes during the whole product life cycle. Production Engineering bases on technical, economic, human and social sciences. It uses the know – how of telecommunication, informatics, management, public communication and human resources management. Therefore it has all the qualities necessary for educating engineers accordingly to the needs of modern market economy. The paper presents briefly chosen aspects of engineering activity in the field of production engineering

    Production Engineering - Personnel Education for the Needs of Market Economy

    Get PDF
    Production Engineering is the youngest, but fast developing scientific discipline in Poland. Its field of interests fully corresponds to the formerly created “Management and Production Engineering” study dominant. Production Engineering covers issues such as planning, designing, implementing and management of production and logistic systems and maintenance of their functioning. These systems are understood as socio – technical constructs that aim to integrate the employees, information, energy, materials, tools and processes during the whole product life cycle. Production Engineering bases on technical, economic, human and social sciences. It uses the know – how of telecommunication, informatics, management, public communication and human resources management. Therefore it has all the qualities necessary for educating engineers accordingly to the needs of modern market economy. The paper presents briefly chosen aspects of engineering activity in the field of production engineering

    Identification of Residual Stresses in a Surface Layer of Ti6AL4V and Inconel 718 after Process of Peripheral Milling

    Get PDF
    Titanium based alloy – Ti6Al4V and nickel based alloy – Inconel 718 belong to the group of difficult-to-cut materials. Thanks to their unique properties they can be used in constructions that need to withstand the high reliability requirements which are required inter alia in the aircraft industry. The physical properties of cutting layer, including residual stresses, play an important role during exploitation of products made out of difficult-to-cut materials. In the article, the method of residual stresses determination is described and the exemplary results of carried out studies are provided. Described method is based on the measurement of the defects in the crystal lattice. The carried out studies show that the state of residual stresses, in a subsurface layer, can be formed by the selection of machining conditions

    Radiative neutron capture cross-section measurement of ge isotopes at n_TOF CERN facility and its importance for stellar nucleosynthesis

    Get PDF
    This manuscript summarizes the results of radiative neutron capture cross-section measurements on two stable germanium isotopes, 70Ge and 73Ge. Experiments were performed at the n_TOF facility at CERN via the time-of-flight technique, over a wide neutron energy range, for all stable germanium isotopes (70,72,73,74, and 76). Results for 70Ge [Phys. Rev. C 100, 045804 (2019)] and 73Ge [Phys. Lett. B 790, 458 (2019)] are already published. In the field of nuclear structure, such measurements allow to study excited levels close to the neutron binding energy and to obtain information on nuclear properties. In stellar nucleosynthesis research, neutron induced reactions on germanium are of importance for nucleosynthesis in the weak component of the slow neutron capture processes.Peer ReviewedArticle signat per 134 autors/autores: A. Gawlik, C. Lederer-Woods, J. Andrzejewski, J. Perkowski, U. Battino, P. Ferreira, F. Gunsing, S. Heinitz, M. Krtička, C. Massimi, F. Mingrone, R. Reifarth, A. Tattersall, S. Valenta, C. Weiss, O. Aberle, L. Audouin, M. Bacak, J. Balibrea, M. Barbagallo, S. Barros, V. Bécares, F. Bečvář, C. Beinrucker, E. Berthoumieux, J. Billowes, D. Bosnar, M. Brugger, M. Caamaño, F. Calviño, M. Calviani, D. Cano-Ott, R. Cardella, A. Casanovas, D.M. Castelluccio, F. Cerutti, Y.H. Chen, E. Chiaveri, N. Colonna, G. Cortés, M.A. Cortés-Giraldo, L. Cosentino, L.A. Damone, M. Diakaki, M. Dietz, C. Domingo-Pardo, R. Dressler, E. Dupont, I. Durán, B. Fernández-Domínguez, A. Ferrari, P. Finocchiaro, V. Furman, K. Göbel, A.R. García, T. Glodariu, I.F. Gonçalves, E. González-Romero, A. Goverdovski, E. Griesmayer, C. Guerrero, H. Harada, T. Heftrich, J. Heyse, D.G. Jenkins, E. Jericha, F. Käppeler, Y. Kadi, T. Katabuchi, P. Kavrigin, V. Ketlerov, V. Khryachkov, A. Kimura, N. Kivel, I. Knapova, M. Kokkoris, E. Leal-Cidoncha, H. Leeb, J. Lerendegui-Marco, S. Lo Meo, S.J. Lonsdale, R. Losito, D. Macina, T. Martínez, P. Mastinu, M. Mastromarco, F. Matteucci, E.A. Maugeri, E. Mendoza, A. Mengoni, P.M. Milazzo, M. Mirea, S. Montesano, A. Musumarra, R. Nolte, A. Oprea, N. Patronis, A. Pavlik, J.I. Porras, J. Praena, J.M. Quesada, K. Rajeev, T. Rauscher, A. Riego-Perez, P.C. Rout, C. Rubbia, J.A. Ryan, M. Sabaté-Gilarte, A. Saxena, P. Schillebeeckx, S. Schmidt, D. Schumann, P. Sedyshev, A.G. Smith, A. Stamatopoulos, G. Tagliente, J.L. Tain, A. Tarifeño-Saldivia, L. Tassan-Got, A. Tsinganis, G. Vannini, V. Variale, P. Vaz, A. Ventura, V. Vlachoudis, R. Vlastou, A. Wallner, S. Warren, M. Weigand, C. Wolf, P.J. Woods, T. Wright, P. ŽugecObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantPostprint (author's final draft

    First Results of the 140^{140}Ce(n,γ)141^{141}Ce Cross-Section Measurement at n_TOF

    Get PDF
    An accurate measurement of the 140^{140}Ce(n,γ) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the 140^{140}Ce capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in 140^{140}Ce to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the 140^{140}Ce Maxwellian-averaged cross-section

    First Results of the 140^{140}Ce(n,γ)141^{141}Ce Cross-Section Measurement at n_TOF

    Get PDF
    An accurate measurement of the 140^{140}Ce(n,γ) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the 140^{140}Ce capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in 140^{140}Ce to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the 140^{140}Ce Maxwellian-averaged cross-section

    Mechanical engineering in Industry 4.0

    No full text
    The article presents tools, methods and systems used in mechanical engineering that in combination with information technologies create the grounds of Industry 4.0. The authors emphasize that mechanical engineering has always been the foundation of industrial activity, while information technology, the essential part of Industry 4.0, is its main source of innovation. The article discusses issues concerning product design, machining tools, machine tools and measurement systems

    Maintenance Supervision of the Dies Condition and Technological Quality of Forged Products in Industrial Conditions

    No full text
    Wear of the working surfaces of the forging dies in the process of manufacturing products with the die forging technique leads to deterioration of their operational properties as well as their technological quality. A characteristic feature of production in small and medium-sized enterprises is the high variability of the product range and short production series, which can be repeated in the case of re-orders by customers. In this type of production conditions, a technological criterion in form of – a change in the characteristic and selected dimension of forging is usually used to assess the quality of products. An important problem is, whether by taking up another order for a series of the same type of product, it will be possible to implement it with the existing die, or should a new die be made? As a result of the research carried out in the company implementing this type of contract, a procedure was proposed for forecasting the abrasive wear of die working surfaces on the basis of a technological criterion, easy to determine in the conditions of small and medium-sized enterprises. The paper presents the results of the wear assessment of a die made out of hot-work tool steel X37CrMoV5-1 (WCL) and dies made of 42CrMo4 alloy structural steel with hardfacing working surfaces by F-818 wire. To determine and forecast the process of die wear, a mathematical model in the form of neural networks was used. Their task was to forecast the ratio of the increment in introduced wear intensity indicator to the number of forgings made during the process. Taking into accoun
    corecore